Step 1: Represent \( z_1 \) and \( z_2 \) in polar form.
For \( z_1 = -1 + i \):
\[
|z_1| = \sqrt{(-1)^2 + 1^2} = \sqrt{2}, \quad \text{and} \quad \text{Arg}(z_1) = \tan^{-1}\left(\frac{1}{-1}\right) + \pi = \frac{3\pi}{4}.
\]
For \( z_2 = 2i \):
\[
|z_2| = |2i| = 2, \quad \text{and} \quad \text{Arg}(z_2) = \frac{\pi}{2}.
\]
Step 2: Division of \( z_1 \) and \( z_2 \).
The modulus of \( z_1 / z_2 \) is:
\[
\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|} = \frac{\sqrt{2}}{2}.
\]
The argument of \( z_1 / z_2 \) is:
\[
\text{Arg}\left(\frac{z_1}{z_2}\right) = \text{Arg}(z_1) - \text{Arg}(z_2) = \frac{3\pi}{4} - \frac{\pi}{2}.
\]
Simplify:
\[
\text{Arg}\left(\frac{z_1}{z_2}\right) = \frac{3\pi}{4} - \frac{2\pi}{4} = \frac{\pi}{4}.
\]
Step 3: Conclusion.
The argument of \( z_1 / z_2 \) is \( \frac{\pi}{4} \).