Step 1: Simplify the differential equation
Using the identity
\[
\sin(x+y)+\sin(x-y)=2\sin x\cos y
\]
the given equation becomes
\[
\sec y\,\frac{dy}{dx}-2\sin x\cos y=0
\]
\[
\frac{1}{\cos y}\frac{dy}{dx}=2\sin x\cos y
\]
\[
\frac{dy}{dx}=2\sin x\cos^2 y
\]
Step 2: Separate the variables
\[
\frac{1}{\cos^2 y}\,dy=2\sin x\,dx
\]
\[
\sec^2 y\,dy=2\sin x\,dx
\]
Step 3: Integrate both sides
\[
\int \sec^2 y\,dy=\int 2\sin x\,dx
\]
\[
\tan y=-2\cos x+C
\]
Step 4: Use the initial condition
Given \(y(0)=0\),
\[
\tan 0=-2\cos 0+C
\]
\[
0=-2+C \Rightarrow C=2
\]
Hence,
\[
\tan y=2-2\cos x
\]
Step 5: Find \(y(\pi/2)\)
\[
\tan y\Big|_{x=\pi/2}=2-2\cos\frac{\pi}{2}=2
\]
\[
\tan y(\pi/2)=2
\]
Using
\[
1+\tan^2 y=\sec^2 y
\]
\[
\sec^2 y=1+4=5
\Rightarrow \cos^2 y=\frac{1}{5}
\]
Step 6: Evaluate \(y'(\pi/2)\)
From
\[
\frac{dy}{dx}=2\sin x\cos^2 y
\]
\[
y'(\pi/2)=2\sin\frac{\pi}{2}\cdot\frac{1}{5}=\frac{2}{5}
\]
Step 7: Final value
\[
5y'(\pi/2)=5\times\frac{2}{5}=2
\]
Answer: \(\boxed{2}\)