If \( y = x \log \left( \frac{1}{ax} \right) \), then \( x(1 + x) \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = \)
Show Hint
Simplify the expression for ( y ) using logarithm properties before differentiating. Calculate the first and second derivatives of ( y ) with respect to ( x ). Substitute these derivatives and ( y ) into the given expression and simplify. Pay close attention to algebraic manipulations.
Given \( y = x \log \left( \frac{1}{ax} \right) = x (-\log(ax)) = -x (\log a + \log x) = -x \log a - x \log x \).
First derivative: \( \frac{dy}{dx} = -\log a - (\log x + x \cdot \frac{1}{x}) = -\log a - \log x - 1 \).
Second derivative: \( \frac{d^2 y}{dx^2} = -\frac{1}{x} \).
Substitute into the expression:
$$ x(1 + x) \left( -\frac{1}{x} \right) + x (-\log a - \log x - 1) - (-x \log a - x \log x) $$
$$ = -(1 + x) - x \log a - x \log x - x + x \log a + x \log x $$
$$ = -1 - x - x = -1 - 2x $$
There seems to be an error in my calculation or the options provided. Let's double-check the derivatives.
\( y = -x \log a - x \log x \)
\( y' = -\log a - (\log x + 1) \)
\( y'' = -\frac{1}{x} \)
Expression: \( x(1 + x)(-\frac{1}{x}) + x(-\log a - \log x - 1) - (-x \log a - x \log x) \)
\( = -(1 + x) - x\log a - x\log x - x + x\log a + x\log x = -1 - 2x \)