Step 1: Differentiating using the Fundamental Theorem of Calculus.
We differentiate \( y(x) \) using the Leibniz rule for differentiating an integral with variable limits:
\[
y'(x) = e^x - e^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}}.
\]
Step 2: Evaluating at \( x = 1 \).
Substituting \( x = 1 \) into the derivative:
\[
y'(1) = e^1 - e^{\sqrt{1}} \cdot \frac{1}{2\sqrt{1}} = e - \frac{e}{2} = 0.
\]