\(x^{e^x}[1/x+lnx]+e^x\)
\(=e^{x}.x^{e^x-1}+e.x^{e-1}\)
\(e^x.x^{e^x-1}+ex^e\)
\(x^{e^x }e^-x[1/x-lnx]+ex^e-1\)
\(x^{e^x} e^x[1/x-lnx]+ex^e-1\)
\(x^{e^x} e^x[1/x+lnx]+ex^e-1\)
Step 1: Differentiate the function \( y = xe^{ex} + x^e \) with respect to \( x \).
Step 2: Differentiate the first term \( xe^{ex} \) using the product rule: \[ \frac{d}{dx}(xe^{ex}) = e^{ex} + x \cdot e^{ex} \cdot e = e^{ex}(1 + ex) \] This can be rewritten as: \[ xe^{ex}\left(\frac{1}{x} + e\right) \]
Step 3: Differentiate the second term \( x^e \): \[ \frac{d}{dx}(x^e) = ex^{e-1} \]
Step 4: Combine the derivatives: \[ \frac{dy}{dx} = e^{ex}(1 + ex) + ex^{e-1} \] Or equivalently: \[ \frac{dy}{dx} = xe^{ex}\left(\frac{1}{x} + e\right) + ex^{e-1} \]
Conclusion: The correct derivative matches option (E): \[ \boxed{E} \quad \left( xe^{ex}\left[\frac{1}{x} + e\right] + ex^{e-1} \right) \]
1. Differentiating \( x^{e^x} \):
Let \( u = x^{e^x} \). Then \( \ln(u) = e^x \ln(x) \).
Differentiating both sides with respect to \( x \):
\[ \frac{1}{u} \cdot \frac{du}{dx} = e^x \ln(x) + \frac{e^x}{x} \] \[ \frac{du}{dx} = u \cdot \left[e^x \ln(x) + \frac{e^x}{x}\right] = x^{e^x} \left[e^x \ln(x) + \frac{e^x}{x}\right] \]
2. Differentiating \( x^e \):
This is a simple power rule differentiation:
\[ \frac{d}{dx} (x^e) = e x^{e-1} \]
3. Combining the derivatives:
\[ \frac{dy}{dx} = \frac{du}{dx} + \frac{d}{dx}(x^e) = x^{e^x} \left[e^x \ln(x) + \frac{e^x}{x}\right] + e x^{e-1} \]
Therefore, the derivative \( \frac{dy}{dx} \) is:
\[ x^{e^x} \left[e^x \ln(x) + \frac{e^x}{x}\right] + e x^{e-1} \]
A cylindrical tank of radius 10 cm is being filled with sugar at the rate of 100π cm3/s. The rate at which the height of the sugar inside the tank is increasing is:
If \(f(x) = \begin{cases} x^2 + 3x + a, & x \leq 1 bx + 2, & x>1 \end{cases}\), \(x \in \mathbb{R}\), is everywhere differentiable, then
If some other quantity ‘y’ causes some change in a quantity of surely ‘x’, in view of the fact that an equation of the form y = f(x) gets consistently pleased, i.e, ‘y’ is a function of ‘x’ then the rate of change of ‘y’ related to ‘x’ is to be given by
\(\frac{\triangle y}{\triangle x}=\frac{y_2-y_1}{x_2-x_1}\)
This is also known to be as the Average Rate of Change.
Consider y = f(x) be a differentiable function (whose derivative exists at all points in the domain) in an interval x = (a,b).
Read More: Application of Derivatives