Question:

If $y =tan ^{-1} \sqrt {x^2-1}$ then the ratio $\frac {d^2y}{dx^2}: \frac {dy}{dx}$=_________

Updated On: Apr 18, 2024
  • $\frac {1+2x^2}{x(x^2+1)}$
  • $\frac {x(x^n+1)}{(1-2x^2)}$
  • $\frac {x(x^2 -1)}{(1+2x^2)}$
  • $\frac {1- 2x^2 }{x(x^2-1)}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

$y=\tan ^{-1} \sqrt{x^{2}-1}$ Put $\begin{cases} x=\sec \theta \\ d x=\sec \theta \cdot \tan \theta d \theta \end{cases}$ $y=\tan ^{-1} \sqrt{\sec ^{2} \theta-1}=\tan ^{-1}(\tan \theta)=\theta$ $=\sec ^{-1} x$ $\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{x \sqrt{x^{2}-1}}$ $\frac{d^{2} y}{d x^{2}} =\frac{1}{x} \cdot \frac{-1}{2} \frac{1}{\left(x^{2}-1\right)^{3 / 2}}(2 x)-\frac{1}{x^{2}} \cdot \frac{1}{\sqrt{x^{2}-1}}$ $=-\frac{1}{\left(x^{2}-1\right)^{3 / 2}}-\frac{1}{x^{2}\left(x^{2}-1\right)^{1 / 2}}$ $=-\frac{1}{x^{2}\left(x^{2}-1\right)^{3 / 2}}\left(x^{2}+x^{2}-1\right)$ $=-\frac{\left(2 x^{2}-1\right)}{x^{2}\left(x^{2}-1\right)^{3 / 2}}$ Now, $\frac{d^{2} y}{d x^{2}}: \frac{d y}{d x}$ $=-\frac{\left(2 x^{2}-1\right)}{x^{2}\left(x^{2}-1\right)^{3 / 2}}: \frac{1}{x\left(x^{2}-1\right)^{1 / 2}}$ $\frac{d^{2} y}{d x^{2}}: \frac{d y}{d x}=\left(1-2 x^{2}\right): x\left(x^{2}-1\right)$ or $\left(\frac{\frac{d^{2} y}{d x^{2}}}{\frac{d y}{d x}}\right)$ $=\frac{\left(1-2 x^{2}\right)}{x\left(x^{2}-1\right)}$
Was this answer helpful?
0
0

Top Questions on Continuity and differentiability

View More Questions

Concepts Used:

Continuity & Differentiability

Definition of Differentiability

f(x) is said to be differentiable at the point x = a, if the derivative f ‘(a) be at every point in its domain. It is given by

Differentiability

Definition of Continuity

Mathematically, a function is said to be continuous at a point x = a,  if

It is implicit that if the left-hand limit (L.H.L), right-hand limit (R.H.L), and the value of the function at x=a exist and these parameters are equal to each other, then the function f is said to be continuous at x=a.

Continuity

If the function is unspecified or does not exist, then we say that the function is discontinuous.