Step 1: Differentiate using the chain rule
We are given \( y = \tan^{-1}\left( \frac{\sqrt{x} - x}{1 + x^{3/2}} \right) \). To find \( y'(1) \), we differentiate the function using the chain rule.
The derivative of \( \tan^{-1}(u) \) is:
\[
\frac{d}{dx} \tan^{-1}(u) = \frac{1}{1 + u^2} \cdot \frac{du}{dx}
\]
Let \( u = \frac{\sqrt{x} - x}{1 + x^{3/2}} \). Then:
\[
y' = \frac{1}{1 + u^2} \cdot \frac{du}{dx}
\]
We need to find \( \frac{du}{dx} \).
Step 2: Differentiate \( u = \frac{\sqrt{x} - x}{1 + x^{3/2}} \)
We apply the quotient rule to differentiate \( u \). The quotient rule is:
\[
\frac{d}{dx} \left( \frac{f(x)}{g(x)} \right) = \frac{g(x) f'(x) - f(x) g'(x)}{g(x)^2}
\]
where \( f(x) = \sqrt{x} - x \) and \( g(x) = 1 + x^{3/2} \).
First, we differentiate \( f(x) = \sqrt{x} - x \):
\[
f'(x) = \frac{1}{2\sqrt{x}} - 1
\]
Next, we differentiate \( g(x) = 1 + x^{3/2} \):
\[
g'(x) = \frac{3}{2} x^{1/2}
\]
Now, applying the quotient rule:
\[
\frac{du}{dx} = \frac{(1 + x^{3/2}) \left( \frac{1}{2\sqrt{x}} - 1 \right) - (\sqrt{x} - x) \left( \frac{3}{2} x^{1/2} \right)}{(1 + x^{3/2})^2}
\]
Step 3: Simplify and evaluate at \( x = 1 \)
Now, we evaluate \( y' \) at \( x = 1 \). First, compute \( u \) at \( x = 1 \):
\[
u = \frac{\sqrt{1} - 1}{1 + 1^{3/2}} = \frac{1 - 1}{1 + 1} = 0
\]
So, at \( x = 1 \), \( u = 0 \). This simplifies \( y' \) to:
\[
y' = \frac{1}{1 + 0^2} \cdot \frac{du}{dx} = \frac{du}{dx}
\]
Now, substitute \( x = 1 \) into the expression for \( \frac{du}{dx} \):
\[
\frac{du}{dx} = \frac{(1 + 1) \left( \frac{1}{2\sqrt{1}} - 1 \right) - (1 - 1) \left( \frac{3}{2} \cdot 1^{1/2} \right)}{(1 + 1)^2}
\]
Simplifying:
\[
\frac{du}{dx} = \frac{2 \left( \frac{1}{2} - 1 \right)}{4} = \frac{2 \cdot (-\frac{1}{2})}{4} = -\frac{1}{4}
\]
Therefore, the value of \( y'(1) \) is:
\(-\frac{1}{4}\)