We are given the equation:
\[
y = \sqrt{\sin x + y}
\]
To find \( \frac{dy}{dx} \), we will differentiate both sides with respect to \( x \) using implicit differentiation.
Step 1: Differentiate both sides
Start by differentiating the left-hand side and the right-hand side of the equation:
\[
\frac{d}{dx}\left(y\right) = \frac{d}{dx}\left(\sqrt{\sin x + y}\right)
\]
The left-hand side becomes:
\[
\frac{dy}{dx}
\]
Now differentiate the right-hand side using the chain rule:
\[
\frac{d}{dx}\left(\sqrt{\sin x + y}\right) = \frac{1}{2\sqrt{\sin x + y}}\left(\cos x + \frac{dy}{dx}\right)
\]
Thus, the equation becomes:
\[
\frac{dy}{dx} = \frac{1}{2\sqrt{\sin x + y}}\left(\cos x + \frac{dy}{dx}\right)
\]
Step 2: Solve for \( \frac{dy}{dx} \)
Now, substitute \( x = 0 \) and \( y = 1 \) into the equation.
At \( x = 0 \):
\[
y = \sqrt{\sin(0) + y} = \sqrt{0 + 1} = 1
\]
Substitute \( y = 1 \) and \( x = 0 \) into the equation for \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} = \frac{1}{2\sqrt{0 + 1}}\left(\cos(0) + \frac{dy}{dx}\right)
\]
\[
\frac{dy}{dx} = \frac{1}{2}(1 + \frac{dy}{dx})
\]
Now simplify:
\[
\frac{dy}{dx} = \frac{1}{2} + \frac{1}{2} \frac{dy}{dx}
\]
\[
\frac{dy}{dx} - \frac{1}{2} \frac{dy}{dx} = \frac{1}{2}
\]
\[
\frac{1}{2} \frac{dy}{dx} = \frac{1}{2}
\]
Thus:
\[
\frac{dy}{dx} = 1
\]
Therefore, the value of \( \frac{dy}{dx} \) at \( x = 0 \) and \( y = 1 \) is \( 1 \).