Step 1: We are given that \( y = \log \left[ \tan \left( \frac{2x - 1}{2x + 1} \right) \right] \).
To differentiate this, let:
\[
u = \frac{2x - 1}{2x + 1}.
\]
Thus, we can rewrite \( y \) as:
\[
y = \log (\tan u).
\]
Now, we differentiate \( y \) with respect to \( u \):
\[
\frac{dy}{du} = \frac{1}{\tan u} \cdot \sec^2 u.
\]
Next, we differentiate \( u = \frac{2x - 1}{2x + 1} \) using the quotient rule:
\[
\frac{du}{dx} = \frac{(2x + 1)(2) - (2x - 1)(2)}{(2x + 1)^2} = \frac{4}{(2x + 1)^2}.
\]
Thus, the total derivative of \( y \) with respect to \( x \) is:
\[
\frac{dy}{dx} = \frac{1}{\tan u} \cdot \sec^2 u \cdot \frac{du}{dx}.
\]
\bigskip
Step 2: Now, we evaluate the derivative at \( x = 1 \).
First, we calculate \( u \) when \( x = 1 \):
\[
u = \frac{2(1) - 1}{2(1) + 1} = \frac{1}{3}.
\]
Next, we find \( \frac{dy}{dx} \) at \( x = 1 \):
\[
\frac{dy}{dx} = \frac{1}{\tan \left( \frac{1}{3} \right)} \cdot \sec^2 \left( \frac{1}{3} \right) \cdot \frac{4}{(2(1) + 1)^2} = \frac{1}{\tan \left( \frac{1}{3} \right)} \cdot \sec^2 \left( \frac{1}{3} \right) \cdot \frac{4}{9}.
\]
\bigskip
Step 3: Simplifying the expression gives the final result:
\[
\frac{4\sqrt{3} \log 2}{9 \sin \left( \frac{2}{\sqrt{3}} \right)}.
\]
\bigskip