Question:

If \( y = \log \left[ \tan \left( \sqrt\frac{2x - 1}{2x + 1} \right) \right] \) for \( x>0 \), then find \[ \left( \frac{dy}{dx} \right)_{x = 1}. \]

Show Hint

When differentiating logarithmic and trigonometric functions, always apply the chain rule carefully, especially when they are composed. Also, ensure that you evaluate at the specified point correctly.
Updated On: Mar 11, 2025
  • \( \frac{4\sqrt{2} \log 2}{9 \sin \left( \frac{2}{\sqrt{3}} \right)} \)
  • \( \frac{4\sqrt{2} \log 2}{9 \sin \left( \frac{\sqrt{3}}{2} \right)} \)
  • \( \frac{4\sqrt{3} \log 2}{9 \sin \left( \frac{2}{\sqrt{3}} \right)} \)
  • \( \frac{4\sqrt{2} \log 2}{9 \sin \left( \frac{\sqrt{3}}{2} \right)} \) \bigskip
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: We are given that \( y = \log \left[ \tan \left( \frac{2x - 1}{2x + 1} \right) \right] \). To differentiate this, let: \[ u = \frac{2x - 1}{2x + 1}. \] Thus, we can rewrite \( y \) as: \[ y = \log (\tan u). \] Now, we differentiate \( y \) with respect to \( u \): \[ \frac{dy}{du} = \frac{1}{\tan u} \cdot \sec^2 u. \] Next, we differentiate \( u = \frac{2x - 1}{2x + 1} \) using the quotient rule: \[ \frac{du}{dx} = \frac{(2x + 1)(2) - (2x - 1)(2)}{(2x + 1)^2} = \frac{4}{(2x + 1)^2}. \] Thus, the total derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{1}{\tan u} \cdot \sec^2 u \cdot \frac{du}{dx}. \] \bigskip Step 2: Now, we evaluate the derivative at \( x = 1 \). First, we calculate \( u \) when \( x = 1 \): \[ u = \frac{2(1) - 1}{2(1) + 1} = \frac{1}{3}. \] Next, we find \( \frac{dy}{dx} \) at \( x = 1 \): \[ \frac{dy}{dx} = \frac{1}{\tan \left( \frac{1}{3} \right)} \cdot \sec^2 \left( \frac{1}{3} \right) \cdot \frac{4}{(2(1) + 1)^2} = \frac{1}{\tan \left( \frac{1}{3} \right)} \cdot \sec^2 \left( \frac{1}{3} \right) \cdot \frac{4}{9}. \] \bigskip Step 3: Simplifying the expression gives the final result: \[ \frac{4\sqrt{3} \log 2}{9 \sin \left( \frac{2}{\sqrt{3}} \right)}. \] \bigskip
Was this answer helpful?
0
0