The correct option is (A): \(log_2 \bigg(\frac{1}{3}\bigg)\)
\(2^{y^2log_35} = log_23\)
\((2log_35)^{y^2} = 5log_23\)
\((5log_32)^{y^2} = 5log_23\)
\(5^{y^2log_32} = 5log_23\)
\(⇒ y^2log_32 = log_23\)
\(y^2 = (log_23)(log_23)\)
(is negative)
\(y = log_23^{-1}\) = \(log_2\frac{1}{3}\)
,
Given equation: \(2^{y^2log_3 5} = log_2 3\)
Using the property \(a^{bc} = (a^b)^c\): \((2log_3 5)^{y^2} = 5log_2 3\)
Given equation: \((5log_3 2)^{y^2} = 5log_2 3\)
Using the property \(a^{bc} = (a^c)^b\): \(5^{y^2log_3 2} = 5log_2 3\)
Equating the exponents: \(y^2log_3 2 = log_2 3\)
Simplifying the exponent: \(y^2 = (log_2 3)(log_2 3)\) (is negative)
Taking the inverse of \(log_2 3\) to get the final answer: \(y = log_2 3^{-1}\) = \(log_2 \frac{1}{3}\)
The correct option is (A): \(log_2 \left(\frac{1}{3}\right)\)