Question:

If yy is a negative number such that 2y2log352^{y^2log_35 }5log235^{log_23}, then yy equals

Updated On: Aug 15, 2024
  • log2(13)log_2 \bigg(\frac{1}{3}\bigg)
  • log(13)-log \bigg(\frac{1}{3}\bigg)
  • log(15)log \bigg(\frac{1}{5}\bigg)
  • log(15)-log \bigg(\frac{1}{5}\bigg)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Approach Solution - 1

The correct option is (A): log2(13)log_2 \bigg(\frac{1}{3}\bigg)

2y2log35=log232^{y^2log_35} = log_23  

(2log35)y2=5log23(2log_35)^{y^2} = 5log_23  

(5log32)y2=5log23(5log_32)^{y^2} = 5log_23

5y2log32=5log235^{y^2log_32} = 5log_23

y2log32=log23⇒ y^2log_32 = log_23

y2=(log23)(log23)y^2 = (log_23)(log_23)

(is negative)

y=log231y = log_23^{-1} = log213log_2\frac{1}{3}

,

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Given equation: 2y2log35=log232^{y^2log_3 5} = log_2 3
Using the property abc=(ab)ca^{bc} = (a^b)^c: (2log35)y2=5log23(2log_3 5)^{y^2} = 5log_2 3
Given equation: (5log32)y2=5log23(5log_3 2)^{y^2} = 5log_2 3
Using the property abc=(ac)ba^{bc} = (a^c)^b: 5y2log32=5log235^{y^2log_3 2} = 5log_2 3
Equating the exponents: y2log32=log23y^2log_3 2 = log_2 3
Simplifying the exponent: y2=(log23)(log23)y^2 = (log_2 3)(log_2 3) (is negative)
Taking the inverse of log23log_2 3 to get the final answer: y=log231y = log_2 3^{-1} = log213log_2 \frac{1}{3}
The correct option is (A): log2(13)log_2 \left(\frac{1}{3}\right)

Was this answer helpful?
0
0