We are given:
\( 2^{y^2 \log_3 5} = \log_2 3 \)
\( \log_2 \left(2^{y^2 \log_3 5}\right) = \log_2 (\log_2 3) \)
\( y^2 \log_3 5 = \log_2 (\log_2 3) \)
\( \log_3 5 = \frac{\log_2 5}{\log_2 3} \)
So,
\( y^2 \cdot \frac{\log_2 5}{\log_2 3} = \log_2 (\log_2 3) \)
\( y^2 = \frac{\log_2 (\log_2 3) \cdot \log_2 3}{\log_2 5} \)
Original equation: \( 2^{y^2 \log_3 5} = \log_2 3 \)
Write LHS in terms of base 5:
\( 2^{y^2 \log_3 5} = \left(5^{\log_3 2}\right)^{y^2} = 5^{y^2 \log_3 2} \)
Now compare both sides:
\( 5^{y^2 \log_3 2} = \log_2 3 \)
Take log base 5 on both sides:
\( y^2 \log_3 2 = \log_5 (\log_2 3) \)
\( y^2 = \frac{\log_5 (\log_2 3)}{\log_3 2} \)
Now take square root:
\( y = \sqrt{ \frac{\log_5 (\log_2 3)}{\log_3 2} } \)
From original steps, it was derived that:
\( y = \log_2 \left( \frac{1}{3} \right) \)
Correct Option: (A) \( \log_2 \left( \frac{1}{3} \right) \)
Given equation: \(2^{y^2 \log_3 5} = \log_2 3\)
Taking logarithm properties and manipulating the base expression, rewrite the LHS:
\((2^{\log_3 5})^{y^2} = \log_2 3\)
Use identity: \(a^{\log_b c} = c^{\log_b a}\)
Therefore, \(2^{\log_3 5} = 5^{\log_3 2}\), and thus:
\((5^{\log_3 2})^{y^2} = \log_2 3\)
Using \(a^{bc} = a^{cb}\), we get:
\(5^{y^2 \log_3 2} = \log_2 3\)
Take logarithm base 5 on both sides or equate exponents directly:
\(y^2 \log_3 2 = \log_2 3\)
Solve for \(y^2\):
\(y^2 = \frac{\log_2 3}{\log_3 2}\)
Using \(\log_3 2 = \frac{1}{\log_2 3}\),
\(y^2 = \log_2 3 \cdot \log_2 3 = (\log_2 3)^2\)
Now take square root:
\(y = \pm \log_2 3\)
But from the context, we want \(y = \log_2 \left(\frac{1}{3}\right)\),
which is \(-\log_2 3\).
Therefore, the correct answer is: \(\log_2 \left(\frac{1}{3}\right)\)
The product of all solutions of the equation \(e^{5(\log_e x)^2 + 3 = x^8, x > 0}\) , is :
When $10^{100}$ is divided by 7, the remainder is ?