Begin by rewriting the expression for \( y \) in terms of trigonometric identities:
\( y = \frac{1}{\sqrt{1 - 4 \sin^2 x \cos^2 x}} \).
Using the double angle identity \( \sin^2 x \cos^2 x = \frac{1}{4} \sin^2(2x) \), rewrite \( y \):
\( y = \frac{1}{\sqrt{1 - \sin^2(2x)}} \).
The term \( 1 - \sin^2(2x) \) simplifies to \( \cos^2(2x) \). Thus:
\( y = \frac{1}{\cos(2x)} = \sec(2x) \).
Differentiate \( y \) with respect to \( x \):
\( \frac{dy}{dx} = \frac{d}{dx} (\sec(2x)) \).
The derivative of \( \sec(2x) \) is:
\( \frac{dy}{dx} = \sec(2x) \tan(2x) \times 2 \).
Thus:
\( \frac{dy}{dx} = 2 \sec^2(2x) \tan(2x) \).
Therefore, the correct answer is:
\( 2 \sec 2x \tan 2x \).
Let \( f : [1, \infty) \to [2, \infty) \) be a differentiable function. If
\( 10 \int_{1}^{x} f(t) \, dt = 5x f(x) - x^5 - 9 \) for all \( x \ge 1 \), then the value of \( f(3) \) is ______.
Three friends, P, Q, and R, are solving a puzzle with statements:
(i) If P is a knight, Q is a knave.
(ii) If Q is a knight, R is a spy.
(iii) If R is a knight, P is a knave. Knights always tell the truth, knaves always lie, and spies sometimes tell the truth. If each friend is either a knight, knave, or spy, who is the knight?