Let \[ y = e^{\sqrt{x\sqrt{x\sqrt{x\ldots}}}} = e^{\sqrt{x\cdot y}} \quad \text{(since the nested root tends to a limit)} \] Take natural logarithm: \[ \ln y = \sqrt{x \cdot y} \] Differentiate both sides with respect to \(x\): LHS: \[ \frac{1}{y} \cdot \frac{dy}{dx} \] RHS: \[ \frac{1}{2\sqrt{xy}} \cdot \left( y + x \cdot \frac{dy}{dx} \right) \] So, \[ \frac{1}{y} \cdot \frac{dy}{dx} = \frac{y + x \cdot \frac{dy}{dx}}{2\sqrt{xy}} \] Multiply both sides by \(2\sqrt{xy}\): \[ \frac{2\sqrt{xy}}{y} \cdot \frac{dy}{dx} = y + x \cdot \frac{dy}{dx} \] Now, simplify: \[ \frac{2\sqrt{x} \cdot \sqrt{y}}{y} \cdot \frac{dy}{dx} = y + x \cdot \frac{dy}{dx} \Rightarrow \frac{2\sqrt{x}}{\sqrt{y}} \cdot \frac{dy}{dx} = y + x \cdot \frac{dy}{dx} \] Rewriting: \[ \frac{dy}{dx} \left( \frac{2\sqrt{x}}{\sqrt{y}} - x \right) = y \Rightarrow \frac{dy}{dx} = \frac{y}{\frac{2\sqrt{x}}{\sqrt{y}} - x} \] Now evaluate at \(x = \ln 3\). First, compute \(y\): \[ \ln y = \sqrt{x \cdot y} \Rightarrow \ln y = \sqrt{\ln 3 \cdot y} \] Try \(y = 3\): \[ \ln 3 = \sqrt{\ln 3 \cdot 3} \Rightarrow \ln 3 = \sqrt{3\ln 3} \Rightarrow (\ln 3)^2 = 3 \ln 3 \Rightarrow \ln 3 = 3 \Rightarrow \text{False} \] Try \(y = e^{\sqrt{x y}}\) again with \(x = \ln 3\) Guess: Let’s take \(y = 3\), try if it satisfies \[ \ln y = \ln 3 \Rightarrow \sqrt{x y} = \ln 3 \Rightarrow \sqrt{\ln 3 \cdot 3} = \ln 3 \Rightarrow \ln 3 = \sqrt{3 \ln 3} \Rightarrow (\ln 3)^2 = 3 \ln 3 \Rightarrow \ln 3 = 3 \Rightarrow \text{Contradiction} \] Let’s take \(y = 1\) Then: \[ \ln y = 0, \quad \sqrt{x \cdot y} = \sqrt{x} \Rightarrow \ln y = \sqrt{x} \Rightarrow 0 = \sqrt{x} \Rightarrow x = 0 \quad \text{Not valid} \] Let’s define: \[ z = \sqrt{x \cdot z} \Rightarrow z^2 = xz \Rightarrow z(z - x) = 0 \Rightarrow z = 0 \text{ or } z = x \] We discard 0, so: \[ z = x \Rightarrow y = e^{x} \] So, \[ y = e^x, \quad \frac{dy}{dx} = e^x, \quad \frac{d^2y}{dx^2} = e^x \] Now at \(x = \log_e 3\): \[ \frac{d^2y}{dx^2} = e^{\log_e 3} = 3 \] Hence, \(\left. \frac{d^2y}{dx^2} \right|_{x = \log_e 3} = 3\)
Let \(z = \sqrt{x\sqrt{x\sqrt{x\ldots}}}\). Then, \(z = \sqrt{xz}\), so \(z^2 = xz\). Since x > 1, then z cannot be zero, so \(z = x\).
Thus, \(y = e^z = e^x\).
Now, we find the first and second derivatives of y with respect to x:
\(\frac{dy}{dx} = \frac{d}{dx}(e^x) = e^x\)
\(\frac{d^2y}{dx^2} = \frac{d}{dx}(e^x) = e^x\)
We want to evaluate \(\frac{d^2y}{dx^2}\) at \(x = \log_e 3\). So we have:
\(\left. \frac{d^2y}{dx^2} \right|_{x = \log_e 3} = e^{\log_e 3}\)
Since \(e^{\log_e a} = a\),
\(\left. \frac{d^2y}{dx^2} \right|_{x = \log_e 3} = 3\)
Answer: 3
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is
In an experiment to determine the figure of merit of a galvanometer by half deflection method, a student constructed the following circuit. He applied a resistance of \( 520 \, \Omega \) in \( R \). When \( K_1 \) is closed and \( K_2 \) is open, the deflection observed in the galvanometer is 20 div. When \( K_1 \) is also closed and a resistance of \( 90 \, \Omega \) is removed in \( S \), the deflection becomes 13 div. The resistance of galvanometer is nearly: