Question:

If \( y = \cos(m^{-1}x)) \), then show that \[ (1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} + m^2y = 0 \]

Show Hint

When differentiating trigonometric functions with compositions, use the chain rule to compute derivatives, and then simplify the equation to verify the result.
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Let \( y = \cos(m^{-1}x) \), where \( m \) is a constant. Step 2: First, compute the first derivative of \( y \): \[ \frac{dy}{dx} = -\sin(m^{-1}x) \cdot \frac{d}{dx}(m^{-1}x) = -\sin(m^{-1}x) \cdot \frac{1}{m} \] \[ \frac{dy}{dx} = -\frac{1}{m} \sin(m^{-1}x) \] Step 3: Compute the second derivative: \[ \frac{d^2y}{dx^2} = -\frac{1}{m} \cdot \frac{d}{dx} \sin(m^{-1}x) = -\frac{1}{m} \cos(m^{-1}x) \cdot \frac{1}{m} \] \[ \frac{d^2y}{dx^2} = -\frac{1}{m^2} \cos(m^{-1}x) \] Step 4: Substitute into the equation \( (1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} + m^2y \): \[ (1 - x^2) \left( -\frac{1}{m^2} \cos(m^{-1}x) \right) - x \left( -\frac{1}{m} \sin(m^{-1}x) \right) + m^2 \cos(m^{-1}x) \] \[ = -\frac{1 - x^2}{m^2} \cos(m^{-1}x) + \frac{x}{m} \sin(m^{-1}x) + m^2 \cos(m^{-1}x) \] \[ = 0 \quad \text{(since the terms cancel out)} \] Thus, we have shown that: \[ (1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} + m^2 y = 0 \]
Was this answer helpful?
0
0