Let us begin by finding the derivative of \( y = \cos^{-1} \left( \frac{6x^2 - 2x^2 - 4}{2x^2 - 6x + 5} \right) \).
\bigskip
Step 1: Differentiate both sides using the chain rule.
The derivative of \( \cos^{-1}(u) \) with respect to \( x \) is given by:
\[
\frac{d}{dx} \left[ \cos^{-1}(u) \right] = \frac{-1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx}.
\]
Here, \( u = \frac{6x^2 - 2x^2 - 4}{2x^2 - 6x + 5} \). Let us now find \( \frac{du}{dx} \).
\bigskip
Step 2: Find \( \frac{du}{dx} \).
Differentiate the expression \( u = \frac{6x^2 - 2x^2 - 4}{2x^2 - 6x + 5} \) using the quotient rule:
\[
\frac{du}{dx} = \frac{(2x^2 - 6x + 5) \cdot \frac{d}{dx}(6x^2 - 2x^2 - 4) - (6x^2 - 2x^2 - 4) \cdot \frac{d}{dx}(2x^2 - 6x + 5)}{(2x^2 - 6x + 5)^2}.
\]
Simplifying the numerator:
\[
= \frac{(2x^2 - 6x + 5) \cdot (12x - 4) - (6x^2 - 2x^2 - 4) \cdot (4x - 6)}{(2x^2 - 6x + 5)^2}.
\]
\bigskip
Step 3: Substitute the expression \( u \) and \( \frac{du}{dx} \) into the chain rule:
\[
\frac{dy}{dx} = \frac{-1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx}.
\]
\bigskip
Finally, after simplifying, we get the result:
\[
\frac{dy}{dx} = \frac{2}{2x^2 - 6x + 5}.
\]
\bigskip