>
Exams
>
Mathematics
>
Trigonometric Equations
>
if y cos 1 left frac 6x 2 2x 2 4 2x 2 6x 5 right t
Question:
If \( y = \cos^{-1}\left( \frac{6x^2 - 2x^2 - 4}{2x^2 - 6x + 5} \right) \), then find \( \frac{dy}{dx} \).
Show Hint
When dealing with inverse trigonometric functions and derivatives, remember to apply the chain rule and simplify expressions carefully.
TS EAMCET - 2024
TS EAMCET
Updated On:
Mar 11, 2025
\( \frac{2}{\sqrt{3x^2 - x^2 - 2}} \)
\( \frac{2}{3x^2 - 2} \)
\( \frac{2}{\sqrt{2x^2 - 6x + 5}} \)
\( \frac{2}{2x^2 - 6x + 5} \) \bigskip
Hide Solution
Verified By Collegedunia
The Correct Option is
D
Solution and Explanation
Let us begin by finding the derivative of \( y = \cos^{-1} \left( \frac{6x^2 - 2x^2 - 4}{2x^2 - 6x + 5} \right) \). \bigskip
Step 1:
Differentiate both sides using the chain rule. The derivative of \( \cos^{-1}(u) \) with respect to \( x \) is given by: \[ \frac{d}{dx} \left[ \cos^{-1}(u) \right] = \frac{-1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx}. \] Here, \( u = \frac{6x^2 - 2x^2 - 4}{2x^2 - 6x + 5} \). Let us now find \( \frac{du}{dx} \). \bigskip
Step 2:
Find \( \frac{du}{dx} \). Differentiate the expression \( u = \frac{6x^2 - 2x^2 - 4}{2x^2 - 6x + 5} \) using the quotient rule: \[ \frac{du}{dx} = \frac{(2x^2 - 6x + 5) \cdot \frac{d}{dx}(6x^2 - 2x^2 - 4) - (6x^2 - 2x^2 - 4) \cdot \frac{d}{dx}(2x^2 - 6x + 5)}{(2x^2 - 6x + 5)^2}. \] Simplifying the numerator: \[ = \frac{(2x^2 - 6x + 5) \cdot (12x - 4) - (6x^2 - 2x^2 - 4) \cdot (4x - 6)}{(2x^2 - 6x + 5)^2}. \] \bigskip
Step 3:
Substitute the expression \( u \) and \( \frac{du}{dx} \) into the chain rule: \[ \frac{dy}{dx} = \frac{-1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx}. \] \bigskip Finally, after simplifying, we get the result: \[ \frac{dy}{dx} = \frac{2}{2x^2 - 6x + 5}. \] \bigskip
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Trigonometric Equations
If \( \theta \in \left[ -\frac{7\pi}{6}, \frac{4\pi}{3} \right] \), then the number of solutions of the equation \[ \sqrt{3} \csc^2 \theta - 2 (\sqrt{3} - 1) \csc \theta - 4 = 0 \] is:
JEE Main - 2025
Mathematics
Trigonometric Equations
View Solution
If \[ \lim_{x \to 0} \frac{\cos(2x) + a \cos(4x) - b}{x^4} \] is finite, then \( a + b = \) __.
JEE Main - 2025
Mathematics
Trigonometric Equations
View Solution
The sum of all values of \( \theta \in [0, 2\pi] \) satisfying \( 2\sin^2\theta = \cos 2\theta \) and \( 2\cos^2\theta = 3\sin\theta \) is:
JEE Main - 2025
Mathematics
Trigonometric Equations
View Solution
The sum of all values of \( \theta \in [0, 2\pi] \) satisfying \( 2\sin^2\theta = \cos 2\theta \) and \( 2\cos^2\theta = 3\sin\theta \) is:
JEE Main - 2025
Mathematics
Trigonometric Equations
View Solution
If
\( \cos^2 84^\circ + \sin^2 126^\circ - \sin 84^\circ \cos 126^\circ = K \)
and
\( \cot A + \tan A = 2K \),
then the possible values of
\( \tan A \)
are:
TS EAMCET - 2024
Mathematics
Trigonometric Equations
View Solution
View More Questions
Questions Asked in TS EAMCET exam
At 300 K, the vapour pressure of toluene and benzene are 3.63 kPa and 9.7 kPa, respectively. What is the composition of vapour in equilibrium with the solution containing 0.4 mole fraction of toluene?
TS EAMCET - 2024
Properties of Solids
View Solution
Identify the number of molecules having permanent dipole moment from the following:
$$ CCl_4, NF_3, H_2S, HBr, SF_4, SiF_4, XeF_4, BeCl_2, SnCl_2, BrF_5, SO_2 $$
TS EAMCET - 2024
Atomic Spectra
View Solution
If
\[ \frac{x^4}{(x^2+1)(x-2)} = f(x) + \frac{Ax+B}{x^2+1} + \frac{C}{x-2} \]
then \( f(14) + 2A - B = \) ?
TS EAMCET - 2024
Integration by Partial Fractions
View Solution
If two electromagnetic waves with electric fields given by
$$ \vec{E_1} = E_0 \sin (kx - \omega t) \hat{j} $$
and
$$ \vec{E_2} = E_0 \sin (kx - \omega t + \pi) \hat{j} $$
- interfere, then the peak value of the electric field of the resultant wave is
TS EAMCET - 2024
Magnetic Force
View Solution
The equations
\[ 7x + y - 24 = 0 \quad \text{and} \quad x + 7y - 24 = 0 \]
represent the equal sides of an isosceles triangle. If the third side passes through \( (-1,1) \), then a possible equation for the third side is:
\
TS EAMCET - 2024
Geometry
View Solution
View More Questions