We are given:
\[
\frac{dy}{dx} = -5\sin x - 3\cos x.
\]
Step 1: Compute the second derivative
Differentiating \(\frac{dy}{dx}\) with respect to \(x\), we get:
\[
\frac{d^2y}{dx^2} = -5\cos x + 3\sin x.
\]
Step 2: Add \(y\) to the second derivative
We know \(y = 5\cos x - 3\sin x\). Adding \(y\) to \(\frac{d^2y}{dx^2}\), we have:
\[
\frac{d^2y}{dx^2} + y = (-5\cos x + 3\sin x) + (5\cos x - 3\sin x).
\]
Step 3: Simplify the expression
Combine like terms:
\[
\frac{d^2y}{dx^2} + y = -5\cos x + 5\cos x + 3\sin x - 3\sin x = 0.
\]
Conclusion:
The equation is satisfied, confirming that:
\[
\frac{d^2y}{dx^2} + y = 0.
\]