Question:

If $ y =\sin^{-1} \left(\frac{5x+12 \sqrt{1 -x^{2}}}{13}\right)$ , then $ \frac{dy}{dx} = $

Updated On: Apr 17, 2024
  • $ \frac{3}{\sqrt{1 -x^{2}}}$
  • $ \frac{12}{\sqrt{1 -x^{2}}}$
  • $ \frac{-1}{\sqrt{1 -x^{2}}}$
  • $ \frac{1}{\sqrt{1 -x^{2}}}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

$ y =\sin^{-1} \left(\frac{5x+12 \sqrt{1 -x^{2}}}{13}\right) $
Put $ x = \sin \theta \Rightarrow \theta = \sin^{-1} x $
$y = \sin ^{-1} \left(\frac{5 \sin \theta +12 \cos\theta }{13}\right)$
Now, put $ \frac{5}{13} = \cos t$ and $\frac{12}{13} = \sin t $
$\Rightarrow \tan t = \frac{12}{5} \Rightarrow t =\tan^{-1} \frac{12}{5}$
$\therefore \:\:\: y = \sin ^{-1}\left(\cos t \sin \theta +\sin t \cos \theta\right)$
$ = \sin ^{-1} \sin \left(\theta +t\right) $
$y= \theta +t \Rightarrow y =\sin ^{-1} x + \tan ^{-1} \left(\frac{12}{5}\right)$
Now, $ \frac{dy}{dx} = \frac{1 }{\sqrt{1-x^{2}}}$
Was this answer helpful?
1
0

Top Questions on Continuity and differentiability

View More Questions

Concepts Used:

Continuity & Differentiability

Definition of Differentiability

f(x) is said to be differentiable at the point x = a, if the derivative f ‘(a) be at every point in its domain. It is given by

Differentiability

Definition of Continuity

Mathematically, a function is said to be continuous at a point x = a,  if

It is implicit that if the left-hand limit (L.H.L), right-hand limit (R.H.L), and the value of the function at x=a exist and these parameters are equal to each other, then the function f is said to be continuous at x=a.

Continuity

If the function is unspecified or does not exist, then we say that the function is discontinuous.