Question:

If $X(z) = \frac{1}{1 - z^{-1}}$ with $|z|>1$, then what is the corresponding $x(n)$?

Show Hint

Memorize standard Z-transform pairs like $u(n) \leftrightarrow \frac{1}{1 - z^{-1}}$, and match the ROC.
Updated On: Jun 24, 2025
  • $e^n$
  • $e^{n^2}$
  • $u(n)$
  • $\delta(n)$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Recognize the standard Z-transform pair.
We know: \[ Z\{u(n)\} = \sum_{n=0}^{\infty} z^{-n} = \frac{1}{1 - z^{-1}}, \text{for } |z|>1 \] Step 2: Compare given expression.
Given $X(z) = \frac{1}{1 - z^{-1}}$ matches the Z-transform of unit step function $u(n)$.
Conclusion: $\boxed{x(n) = u(n)}$
Was this answer helpful?
0
0