Health insurance plays a vital role in ensuring financial protection and access to quality healthcare. In India, however, the extent and nature of health insurance coverage vary significantly between urban and rural areas. While urban populations often have better access to organized insurance schemes, employer-provided coverage, and awareness about health policies, rural populations face challenges such as limited outreach of insurance schemes, inadequate infrastructure, and lower awareness levels. This urban-rural divide in health insurance coverage highlights the broader issue of healthcare inequality, making it essential to analyze the factors contributing to this gap and explore strategies for more inclusive health protection. A state-level health survey was conducted.
The survey covered 1,80,000 adults across urban and rural areas. Urban residents formed 55% of the sample (that is, 99,000 people) while rural residents made up 45% (that is, 81,000 people). In each area, coverage was classified under four heads – Public schemes, Private insurance, Employer-provided coverage, and Uninsured. In urban areas, Public coverage accounted for 28% of the urban population, Private for 22%, Employer for 18%, and the remaining 32% were Uninsured. In rural areas, where formal coverage is generally lower, Public coverage stood at 35%, Private at 10%, Employer at 8%, while 47% were Uninsured.
For this survey, “Insured” includes everyone covered by Public + Private + Employer schemes, and “Uninsured” indicates those with no coverage at all. Officials noted that public schemes remain the backbone of rural coverage, while employer and private plans are relatively more prevalent in urban centres. (250 words)
Consider a reinforced concrete beam section of 350 mm width and 600 mm depth. The beam is reinforced with the tension steel of 800 mm\(^2\) area at an effective cover of 40 mm. Consider M20 concrete and Fe415 steel. Let the stress block considered for concrete in IS 456:2000 be replaced by an equivalent rectangular stress block, with no change in (a) the area of the stress block, (b) the design strength of concrete (at the strain of 0.0035), and (c) the location of neutral axis at flexural collapse.
The ultimate moment of resistance of the beam (in kN.m) is ___________ (round off to the nearest integer).
Two soils of permeabilities \( k_1 \) and \( k_2 \) are placed in a horizontal flow apparatus, as shown in the figure. For Soil 1, \( L_1 = 50 \, {cm} \), and \( k_1 = 0.055 \, {cm/s} \); for Soil 2, \( L_2 = 30 \, {cm} \), and \( k_2 = 0.035 \, {cm/s} \). The cross-sectional area of the horizontal pipe is 100 cm², and the head difference (\( \Delta h \)) is 150 cm. The discharge (in cm³/s) through the soils is ........ (rounded off to 2 decimal places).

The most suitable test for measuring the permeability of clayey soils in the laboratory is ___________.
Consider the beam ACDEB given in the figure. Which of the following statements is/are correct:
