To solve the equation: \(\frac{x+y}{x-y}+\frac{x-y}{x+y}=\frac{10}{3}\), let's follow these steps.
First, let \(a=\frac{x+y}{x-y}\) and \(b=\frac{x-y}{x+y}\). We know from the problem statement that \(a+b=\frac{10}{3}\).
Notice that \(a=\frac{1}{b}\) because if you multiply \(\frac{x+y}{x-y}\) by \(\frac{x-y}{x+y}\), you get 1:
\(\left(\frac{x+y}{x-y}\right)\left(\frac{x-y}{x+y}\right)=\frac{(x+y)(x-y)}{(x-y)(x+y)}=1\).
This implies \(b=\frac{1}{a}\).
Thus, we have:
\(a+\frac{1}{a}=\frac{10}{3}\)
Multiply throughout by \(a\) to clear the fraction:
\(a^2+1=\frac{10}{3}a\)
Rearrange this into a standard quadratic equation:
\(3a^2-10a+3=0\)
Use the quadratic formula \(a=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\) where \(a=3\), \(b=-10\), and \(c=3\):
\(a=\frac{-(-10)\pm\sqrt{(-10)^2-4\cdot3\cdot3}}{2\cdot3}\)
\(a=\frac{10\pm\sqrt{100-36}}{6}\)
\(a=\frac{10\pm\sqrt{64}}{6}\)
\(a=\frac{10\pm8}{6}\)
This gives \(a=\frac{18}{6}=3\) or \(a=\frac{2}{6}=\frac{1}{3}\).
Now, \(a=\frac{x+y}{x-y}=3\) leads to \(\frac{b}{a}=1\) implying \(\frac{x-y}{x+y}=\frac{1}{3}\).
Equating both conditions:
\(\frac{x+y}{x-y}=3\) and \(\frac{x-y}{x+y}=\frac{1}{3}\)
Multiply the two equations to verify identity:
\(\left(\frac{x+y}{x-y}\right)\left(\frac{x-y}{x+y}\right)=3\cdot\frac{1}{3}=1\), thus verified.
The ratio \(x:y\) is required:
\(x+y=3(x-y)\)
\(x+y=3x-3y\)
\(4y=2x\)
\(\frac{x}{y}=2\) or \(-2\) leading to \(\pm2\).
Therefore, the correct answer is \(\pm2\).