Step 1: Differentiate implicitly
We are given the equation \( x\sqrt{1 + y} + y\sqrt{1 + x} = 0 \). To find \( \frac{dy}{dx} \), we differentiate both sides of the equation implicitly with respect to \( x \).
Differentiate each term:
1. The derivative of \( x\sqrt{1 + y} \) is found using the product rule:
\[
\frac{d}{dx} \left( x \sqrt{1 + y} \right) = \frac{d}{dx}(x) \cdot \sqrt{1 + y} + x \cdot \frac{d}{dx} \left( \sqrt{1 + y} \right)
\]
\[
= \sqrt{1 + y} + x \cdot \frac{1}{2\sqrt{1 + y}} \cdot \frac{dy}{dx}
\]
2. The derivative of \( y\sqrt{1 + x} \) is also found using the product rule:
\[
\frac{d}{dx} \left( y \sqrt{1 + x} \right) = \frac{d}{dx}(y) \cdot \sqrt{1 + x} + y \cdot \frac{d}{dx} \left( \sqrt{1 + x} \right)
\]
\[
= \frac{dy}{dx} \cdot \sqrt{1 + x} + y \cdot \frac{1}{2\sqrt{1 + x}}
\]
Now, differentiate the entire equation:
\[
\frac{d}{dx} \left( x\sqrt{1 + y} + y\sqrt{1 + x} \right) = 0
\]
Thus, we have the following equation:
\[
\sqrt{1 + y} + x \cdot \frac{1}{2\sqrt{1 + y}} \cdot \frac{dy}{dx} + \frac{dy}{dx} \cdot \sqrt{1 + x} + y \cdot \frac{1}{2\sqrt{1 + x}} = 0
\]
Step 2: Solve for \( \frac{dy}{dx} \)
Group the terms containing \( \frac{dy}{dx} \):
\[
\left( x \cdot \frac{1}{2\sqrt{1 + y}} \cdot + \sqrt{1 + x} \right) \cdot \frac{dy}{dx} = - \left( \sqrt{1 + y} + y \cdot \frac{1}{2\sqrt{1 + x}} \right)
\]
Solve for \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} = \frac{-\left( \sqrt{1 + y} + y \cdot \frac{1}{2\sqrt{1 + x}} \right)}{x \cdot \frac{1}{2\sqrt{1 + y}} + \sqrt{1 + x}}
\]
Simplify the expression to get the final result:
\[
\frac{dy}{dx} = -\frac{1}{(1 + x)^2}
\]
Therefore, the value of \( \frac{dy}{dx} \) is:
\(-\frac{1}{(1 + x)^2}\)