Step 1: Use the given condition $ P(X = 3) = P(X = 6) $.
The probability mass function (PMF) of a binomial distribution is:
$$
P(X = k) = \binom{n}{k} p^k (1-p)^{n-k},
$$
where $ n = 9 $ and $ k = 3, 6 $. Given $ P(X = 3) = P(X = 6) $, we have:
$$
\binom{9}{3} p^3 (1-p)^6 = \binom{9}{6} p^6 (1-p)^3.
$$
Since $ \binom{9}{3} = \binom{9}{6} $, this simplifies to:
$$
p^3 (1-p)^6 = p^6 (1-p)^3.
$$
Divide both sides by $ p^3 (1-p)^3 $ (assuming $ p \neq 0 $ and $ p \neq 1 $):
$$
(1-p)^3 = p^3.
$$
Take the cube root:
$$
1 - p = p \quad \Rightarrow \quad p = \frac{1}{2}.
$$
Step 2: Compute $ P(X<3) $.
Now that $ p = \frac{1}{2} $, the PMF becomes:
$$
P(X = k) = \binom{9}{k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{9-k} = \binom{9}{k} \left(\frac{1}{2}\right)^9.
$$
We need $ P(X<3) = P(X = 0) + P(X = 1) + P(X = 2) $:
$$
P(X<3) = \sum_{k=0}^{2} P(X = k) = \sum_{k=0}^{2} \binom{9}{k} \left(\frac{1}{2}\right)^9.
$$
Compute each term:
$$
P(X = 0) = \binom{9}{0} \left(\frac{1}{2}\right)^9 = 1 \cdot \frac{1}{512} = \frac{1}{512},
$$
$$
P(X = 1) = \binom{9}{1} \left(\frac{1}{2}\right)^9 = 9 \cdot \frac{1}{512} = \frac{9}{512},
$$
$$
P(X = 2) = \binom{9}{2} \left(\frac{1}{2}\right)^9 = 36 \cdot \frac{1}{512} = \frac{36}{512}.
$$
Sum these probabilities:
$$
P(X<3) = \frac{1}{512} + \frac{9}{512} + \frac{36}{512} = \frac{1 + 9 + 36}{512} = \frac{46}{512} = \frac{23}{256}.
$$
Step 3: Final Answer.
$$
\boxed{\frac{23}{256}}
$$