Given that, $ x\left[ \begin{matrix} -3 \\ 4 \\ \end{matrix} \right]+y\left[ \begin{matrix} 4 \\ 3 \\ \end{matrix} \right]=\left[ \begin{matrix} 10 \\ -5 \\ \end{matrix} \right] $ $ \therefore $$ -3x+4y=10 $ ..(i) and $ 4x+3y=-5 $ ..(ii) On multiplying E (i) by 4 and E (ii) by 4 and then subtracting, we get $ -25x=50 $ $ \Rightarrow $$ x=-2 $
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.
The basic operations that can be performed on matrices are:
Addition of Matrices - The addition of matrices addition can only be possible if the number of rows and columns of both the matrices are the same.
Subtraction of Matrices - Matrices subtraction is also possible only if the number of rows and columns of both the matrices are the same.
Scalar Multiplication - The product of a matrix A with any number 'c' is obtained by multiplying every entry of the matrix A by c, is called scalar multiplication.
Multiplication of Matrices - Matrices multiplication is defined only if the number of columns in the first matrix and rows in the second matrix are equal.
Transpose of Matrices - Interchanging of rows and columns is known as the transpose of matrices.