We want to evaluate the integral:
\[ \int_{-0.5}^{1.5} x^2 [x] \, dx \]
The function \([x]\) is the greatest integer not exceeding \(x\), also known as the floor function. We need to determine the function \([x]\) over different intervals of the integration bounds:
We can therefore split the integral into three parts:
\[\int_{-0.5}^{1.5} x^2 [x] \, dx = \int_{-0.5}^{0} x^2 (-1) \, dx + \int_{0}^{1} x^2 (0) \, dx + \int_{1}^{1.5} x^2 (1) \, dx\]
Let's calculate each integral:
\(\int_{-0.5}^{0} x^2 (-1) \, dx = -\int_{-0.5}^{0} x^2 \, dx\)
Calculating:\[\begin{align*}\int x^2 \, dx = \frac{x^3}{3} + C\end{align*}\]
Evaluate from \(-0.5\) to \(0\):\[\begin{align*}-\left[\frac{x^3}{3}\right]_{-0.5}^{0} &= -\left(0 - \frac{(-0.5)^3}{3}\right)\\&= -\left(0 + \frac{0.125}{3}\right)\\&= -\left(\frac{0.125}{3}\right)\\&= -\frac{0.125}{3}\\&= -\frac{1}{24}\end{align*}\]
\(\int_{0}^{1} x^2 (0) \, dx = 0\)
\(\int_{1}^{1.5} x^2 (1) \, dx = \int_{1}^{1.5} x^2 \, dx\)
Calculating:\[\begin{align*}\int x^2 \, dx = \frac{x^3}{3} + C\end{align*}\]
Evaluate from \(1\) to \(1.5\):\[\begin{align*}\left[\frac{x^3}{3}\right]_{1}^{1.5} &= \left(\frac{(1.5)^3}{3} - \frac{1^3}{3}\right)\\&= \left(\frac{3.375}{3} - \frac{1}{3}\right)\\&= \left(\frac{3.375 - 1}{3}\right)\\&= \frac{2.375}{3}\end{align*}\]
Add the results of the three integrals:
\(-\frac{1}{24} + 0 + \frac{2.375}{3} = \frac{-1}{24} + \frac{2.375}{3}\)
Converting to a common denominator:\[\begin{align*}\frac{-1}{24} + \frac{2.375}{3}&= \frac{-1}{24} + \frac{19/8}{3}\\&= \frac{-1}{24} + \frac{19/8 \times 3/3}{1}\\&= \frac{-1}{24} + \frac{171}{24}\\&= \frac{170}{24}\\&= \frac{85}{12}\\&= \frac{2.375}{2}\end{align*}\]
Thus, the integral evaluates to:
\(\frac{2.375}{2}\)