The greatest integer function, denoted by \( [x] \), returns the greatest integer less than or equal to \( x \).
We need to compute the integral:
\[
\int_{-0.5}^{1.5} x^2 [x] \, dx
\]
To solve this, break the integral into intervals where \( [x] \) is constant:
- For \( -0.5 \leq x<0 \), \( [x] = -1 \)
- For \( 0 \leq x<1 \), \( [x] = 0 \)
- For \( 1 \leq x \leq 1.5 \), \( [x] = 1 \)
Thus, the integral becomes:
\[
\int_{-0.5}^{0} x^2 (-1) \, dx + \int_{0}^{1} x^2 (0) \, dx + \int_{1}^{1.5} x^2 (1) \, dx
\]
The first integral is:
\[
\int_{-0.5}^{0} -x^2 \, dx = - \left[ \frac{x^3}{3} \right]_{-0.5}^{0} = - \left( 0 - \frac{(-0.5)^3}{3} \right) = \frac{0.125}{3} = \frac{1}{24}
\]
The second integral is:
\[
\int_{0}^{1} 0 \, dx = 0
\]
The third integral is:
\[
\int_{1}^{1.5} x^2 \, dx = \left[ \frac{x^3}{3} \right]_{1}^{1.5} = \frac{(1.5)^3}{3} - \frac{1^3}{3} = \frac{3.375}{3} - \frac{1}{3} = \frac{2.375}{3}
\]
Now sum these values:
\[
\frac{1}{24} + 0 + \frac{2.375}{3} = \frac{2.375}{3} + \frac{1}{24}
\]
Approximating the sum, we get:
\[
\frac{2.375}{3} + \frac{1}{24} \approx 2.375
\]
Hence, the correct answer is \( \boxed{2.375} \).