Question:

If \( [x] \) is the greatest integer not exceeding \( x \), then \[ \int_{-0.5}^{1.5} x^2 [x] \, dx = \]

Show Hint

When dealing with integrals involving the greatest integer function, split the integral into subintervals where the function is constant and evaluate each part separately.
Updated On: May 15, 2025
  • \( \frac{4.5}{4} \)
  • \( \frac{3}{4} \)
  • \( \frac{3.5}{4} \)
  • \( \frac{2.375}{2} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

The greatest integer function, denoted by \( [x] \), returns the greatest integer less than or equal to \( x \). We need to compute the integral: \[ \int_{-0.5}^{1.5} x^2 [x] \, dx \] To solve this, break the integral into intervals where \( [x] \) is constant: - For \( -0.5 \leq x<0 \), \( [x] = -1 \) - For \( 0 \leq x<1 \), \( [x] = 0 \) - For \( 1 \leq x \leq 1.5 \), \( [x] = 1 \) Thus, the integral becomes: \[ \int_{-0.5}^{0} x^2 (-1) \, dx + \int_{0}^{1} x^2 (0) \, dx + \int_{1}^{1.5} x^2 (1) \, dx \] The first integral is: \[ \int_{-0.5}^{0} -x^2 \, dx = - \left[ \frac{x^3}{3} \right]_{-0.5}^{0} = - \left( 0 - \frac{(-0.5)^3}{3} \right) = \frac{0.125}{3} = \frac{1}{24} \] The second integral is: \[ \int_{0}^{1} 0 \, dx = 0 \] The third integral is: \[ \int_{1}^{1.5} x^2 \, dx = \left[ \frac{x^3}{3} \right]_{1}^{1.5} = \frac{(1.5)^3}{3} - \frac{1^3}{3} = \frac{3.375}{3} - \frac{1}{3} = \frac{2.375}{3} \] Now sum these values: \[ \frac{1}{24} + 0 + \frac{2.375}{3} = \frac{2.375}{3} + \frac{1}{24} \] Approximating the sum, we get: \[ \frac{2.375}{3} + \frac{1}{24} \approx 2.375 \] Hence, the correct answer is \( \boxed{2.375} \).
Was this answer helpful?
0
0