Step 1: Use the property of a probability density function (PDF):
\[
\int_{-\infty}^{\infty} f(x) \, dx = 1
\]
Since \( f(x) = 0 \) outside \( (0, 1) \), we only integrate over \( (0, 1) \):
\[
\int_0^1 K(1 - x^3) \, dx = 1
\]
Step 2: Evaluate the integral:
\[
K \int_0^1 (1 - x^3) \, dx = K \left[ x - \frac{x^4}{4} \right]_0^1 = K\left(1 - \frac{1}{4}\right) = K \cdot \frac{3}{4}
\]
Step 3: Set the integral equal to 1:
\[
K \cdot \frac{3}{4} = 1 ⇒ K = \frac{4}{3}
\]
\[
\boxed{K = \frac{4}{3}}
\]