Given:
\[
x + \frac{1}{x} = 2
\]
This is only possible if \( x = 1 \), since:
\[
x + \frac{1}{x} = 2 \Rightarrow x = 1 \Rightarrow x^{10} + \frac{1}{x^{10}} = 1 + 1 = \boxed{2}
\]
Alternative method (sequence identity):
Let \( A_n = x^n + \frac{1}{x^n} \)
Use identity:
\[
A_n = (x + \frac{1}{x}) A_{n-1} - A_{n-2}
\Rightarrow A_1 = 2, A_0 = 2, A_2 = 2^2 - 2 = 2
\Rightarrow A_3 = 2 A_2 - A_1 = 4 - 2 = 2
\Rightarrow \text{All } A_n = 2
\Rightarrow A_{10} = \boxed{2}
\]