We are given the parametric equations:
\[
x = \frac{1 - t^2}{1 + t^2}, \quad y = \frac{2t}{1 + t^2}.
\]
Step 1: Apply trigonometric substitution.
Let \( t = \tan\theta \), then the expressions for \( x \) and \( y \) become:
\[
x = \cos 2\theta, \quad y = \sin 2\theta.
\]
Step 2: Differentiate with respect to \( \theta \).
The derivatives are:
\[
\frac{dx}{d\theta} = -2\sin 2\theta, \quad \frac{dy}{d\theta} = 2\cos 2\theta.
\]
Now, compute \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{2\cos 2\theta}{-2\sin 2\theta} = -\cot 2\theta.
\]
Step 3: Simplify the expression.
Using the trigonometric identities, we find:
\[
\frac{dy}{dx} = -\frac{x}{y}.
\]
Thus, the correct answer is \( \boxed{(3)} \).