Combine over a common denominator:
\[
\frac{x+2a}{x-2a}+\frac{x+2b}{x-2b}
=\frac{(x+2a)(x-2b)+(x+2b)(x-2a)}{(x-2a)(x-2b)}
=\frac{2x^2-8ab}{x^2-2(a+b)x+4ab}.
\]
Now substitute \(x=\dfrac{4ab}{a+b}\). Then
\[
\text{Numerator} = 2\!\left(x^2-4ab\right)
= -\,\frac{8ab\,(a-b)^2}{(a+b)^2},
\]
\[
\text{Denominator} = x^2-2(a+b)x+4ab
= -\,\frac{4ab\,(a-b)^2}{(a+b)^2}.
\]
Hence the value is
\[
\frac{-\,\frac{8ab\,(a-b)^2}{(a+b)^2}}{-\,\frac{4ab\,(a-b)^2}{(a+b)^2}}=2.
\]
\[
\boxed{2}
\]