Step 1: Rearrange the given equation
The given equation is: \[ x \cos(p + y) + \cos p \sin(p + y) = 0. \] Divide throughout by \( \cos(p + y) \): \[ x + \cos p \tan(p + y) = 0. \] This implies: \[ \tan(p + y) = -\frac{x}{\cos p}. \]
Step 2: Differentiate with respect to \( x \)
Differentiate both sides with respect to \( x \): \[ \sec^2(p + y) \cdot \frac{d}{dx}(p + y) = -\frac{d}{dx}\left(\frac{x}{\cos p}\right). \] Simplify: \[ \sec^2(p + y) \frac{dy}{dx} = -\frac{1}{\cos p}. \]
Step 3: Express \( \frac{dy}{dx} \) in terms of \( \cos^2(p + y) \)
Using \( \sec^2(p + y) = \frac{1}{\cos^2(p + y)} \), we get: \[ \frac{1}{\cos^2(p + y)} \cdot \frac{dy}{dx} = -\frac{1}{\cos p}. \] Multiply through by \( \cos^2(p + y) \): \[ \frac{dy}{dx} = -\cos^2(p + y) \cdot \cos p. \]
Step 4: Conclude the result
\[ \cos p \frac{dy}{dx} = -\cos^2(p + y). \]
\[ x\cos(p+y)+\cos p\sin(p+y)=0,\qquad p\ \text{is constant}. \]
Differentiate term-by-term (remember \(p\) is constant, \(y=y(x)\)): \[ \frac{d}{dx}\big[x\cos(p+y)\big] + \frac{d}{dx}\big[\cos p\sin(p+y)\big]=0. \] For the first term use product rule: \[ \frac{d}{dx}\big[x\cos(p+y)\big]=\cos(p+y)+x\big(-\sin(p+y)\big)\frac{dy}{dx}. \] For the second term (\(\cos p\) is constant): \[ \frac{d}{dx}\big[\cos p\sin(p+y)\big]=\cos p\cdot\cos(p+y)\frac{dy}{dx}. \] Putting these into the differentiated equation: \[ \cos(p+y)-x\sin(p+y)\frac{dy}{dx}+\cos p\cos(p+y)\frac{dy}{dx}=0. \] Collect the terms containing \(\dfrac{dy}{dx}\): \[ \cos(p+y)+\big[-x\sin(p+y)+\cos p\cos(p+y)\big]\frac{dy}{dx}=0. \] Hence \[ \big[-x\sin(p+y)+\cos p\cos(p+y)\big]\frac{dy}{dx}=-\cos(p+y). \] So \[ \frac{dy}{dx}=\frac{-\cos(p+y)}{-x\sin(p+y)+\cos p\cos(p+y)}. \]
From the given equation \[ x\cos(p+y) + \cos p\sin(p+y)=0 \] we get \[ x\cos(p+y)=-\cos p\sin(p+y)\quad\Rightarrow\quad x=\frac{-\cos p\sin(p+y)}{\cos(p+y)}. \] Substitute this \(x\) into the denominator: \[ -x\sin(p+y)+\cos p\cos(p+y) = -\Big(\frac{-\cos p\sin(p+y)}{\cos(p+y)}\Big)\sin(p+y)+\cos p\cos(p+y) \] \[ =\frac{\cos p\sin^2(p+y)}{\cos(p+y)}+\cos p\cos(p+y) =\cos p\;\frac{\sin^2(p+y)+\cos^2(p+y)}{\cos(p+y)} =\cos p\;\frac{1}{\cos(p+y)}. \] Therefore the denominator simplifies to \(\dfrac{\cos p}{\cos(p+y)}\). Substitute back into \(\dfrac{dy}{dx}\): \[ \frac{dy}{dx} =\frac{-\cos(p+y)}{\dfrac{\cos p}{\cos(p+y)}} =-\frac{\cos^2(p+y)}{\cos p}. \] Multiplying both sides by \(\cos p\) gives the required result: \[ \boxed{\;\cos p\;\frac{dy}{dx} = -\cos^2(p+y)\; }. \]
A carpenter needs to make a wooden cuboidal box, closed from all sides, which has a square base and fixed volume. Since he is short of the paint required to paint the box on completion, he wants the surface area to be minimum.
On the basis of the above information, answer the following questions :
Find \( \frac{dS}{dx} \).
Find the interval in which $f(x) = x + \frac{1}{x}$ is always increasing, $x \neq 0$.