Given the equations \( x = at^4 \) and \( y = 2at^2 \), we need to find the second derivative of \( y \) with respect to \( x \), i.e., \( \frac{d^2y}{dx^2} \).
Firstly, determine \( \frac{dy}{dt} \) and \( \frac{dx}{dt} \):
To find \( \frac{dy}{dx} \), use the chain rule:
\(\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{4at}{4at^3} = \frac{1}{t^2}\)
Next, find the derivative of \( \frac{dy}{dx} \) with respect to \( t \):
\(\frac{d}{dt}\left(\frac{dy}{dx}\right) = \frac{d}{dt}\left(\frac{1}{t^2}\right) = -\frac{2}{t^3}\)
Finally, apply the chain rule again to find \( \frac{d^2y}{dx^2} \):
\(\frac{d^2y}{dx^2} = \frac{d}{dt}\left(\frac{dy}{dx}\right) \div \frac{dx}{dt} = \left(-\frac{2}{t^3}\right) \div (4at^3) = -\frac{1}{2at^6}\)
The correct answer is: \(-\frac{1}{2at^6}\)
Given \( x = at^4 \) and \( y = 2at^2 \), differentiate \( y \) with respect to \( t \) to find \( \frac{dy}{dx} \).
First, compute \( \frac{dx}{dt} \) and \( \frac{dy}{dt} \):
\[ \frac{dx}{dt} = 4at^3, \quad \frac{dy}{dt} = 4at. \]
Using the chain rule:
\[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{4at}{4at^3} = \frac{1}{t^2}. \]
Next, differentiate \( \frac{dy}{dx} \) with respect to \( t \):
\[ \frac{d^2y}{dx^2} = \frac{d}{dt} \left( \frac{1}{t^2} \right)\times \frac{dt}{dx}. \]
\[ \frac{d}{dt} \left( \frac{1}{t^2} \right) = -\frac{2}{t^3}, \quad \frac{dt}{dx} = \frac{1}{4at^3}. \]
Substitute these values:
\[ \frac{d^2y}{dx^2} = -\frac{2}{t^3} \times \frac{1}{4at^3} = -\frac{1}{2at^6}. \]
Hence, the correct answer is Option (D).