We use the inequality:
\( AM \geq GM \geq HM \)
Which means:
\( \frac{x + y}{2} \geq \sqrt{xy} \geq \frac{2}{\frac{1}{x} + \frac{1}{y}} \)
Given: \( x + y = 102 \)
Using AM ≥ GM:
\( \sqrt{xy} \leq \frac{102}{2} = 51 \)
So: \( xy \leq 51^2 = 2601 \)
Hence: \( \frac{1}{xy} \geq \frac{1}{2601} \)
Using HM inequality:
\( \frac{1}{x} + \frac{1}{y} \geq \frac{2}{51} \)
Now consider the expression:
\( 2601 \left(1 + \frac{1}{x} \right)\left(1 + \frac{1}{y} \right) \)
Expand this:
\( = 2601 \left( 1 + \frac{1}{x} + \frac{1}{y} + \frac{1}{xy} \right) \)
\( = 2601 \left( 1 + \left( \frac{1}{x} + \frac{1}{y} \right) + \frac{1}{xy} \right) \)
Using the minimum values from earlier:
\( = 2601 \left( 1 + \frac{2}{51} + \frac{1}{2601} \right) \)
Simplifying:
\( = 2601 \left( 1 + \frac{2}{51} + \frac{1}{2601} \right) = 2601 \times \left( \frac{2601 + 102 + 1}{2601} \right) = 2601 \times \frac{2704}{2601} = 2704 \)
∴ The minimum value is \( \boxed{2704} \).
Correct option is (C): 2704
Given:
$x + y = 102$
We know the inequality:
Arithmetic Mean (AM) $\ge$ Geometric Mean (GM)
$\Rightarrow \frac{x + y}{2} \ge \sqrt{xy}$
Substitute the given value:
$\frac{102}{2} \ge \sqrt{xy}$
$51 \ge \sqrt{xy}$
$\Rightarrow 2601 \ge xy$
We have to find the maximum value of:
$2601\left(1 + \frac{1}{x}\right)\left(1 + \frac{1}{y}\right)$
Use identity: $(1 + \frac{1}{x})(1 + \frac{1}{y}) = \frac{xy + x + y + 1}{xy}$
So, the expression becomes:
$= 2601 \cdot \frac{xy + x + y + 1}{xy}$
Substitute:
$x + y = 102$
$xy \le 2601$ (maximum when $xy = 2601$)
So, max value is:
$= 2601 \cdot \frac{2601 + 102 + 1}{2601}$
$= 2601 \cdot \frac{2704}{2601}$
$= \mathbf{2704}$
Final Answer: Option (C): 2704
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
When $10^{100}$ is divided by 7, the remainder is ?