Let $ \mathbb{R} $ denote the set of all real numbers. Define the function $ f: \mathbb{R} \to \mathbb{R} $ by $$ f(x) = \begin{cases} 2 - 2x^2 - x^2 \sin\left(\frac{1}{x}\right), & \text{if } x \ne 0, \\ 2, & \text{if } x = 0. \end{cases} $$ Then which one of the following statements is TRUE?
Match List-I with List-II
| List-I | List-II |
|---|---|
| (A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
| (B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
| (C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
| (D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
Balance Sheet of Atharv and Anmol as at 31st March, 2024
| Liabilities | Amount (₹) | Assets | Amount (₹) |
|---|---|---|---|
| Capitals: | Fixed Assets | 14,00,000 | |
| Atharv | 8,00,000 | Stock | 4,90,000 |
| Anmol | 4,00,000 | Debtors | 5,60,000 |
| General Reserve | 3,50,000 | Cash | 10,000 |
| Creditors | 9,10,000 | ||
| Total | 24,60,000 | Total | 24,60,000 |