We are given that \( x = a \sin \theta \) and \( y = b \tan \theta \). We need to find the value of the expression \[ \frac{a}{x^2} - \frac{b^2}{y^2}. \] Substitute the values of \( x \) and \( y \) from the given equations: \[ x = a \sin \theta \quad \Rightarrow \quad x^2 = a^2 \sin^2 \theta, \] \[ y = b \tan \theta \quad \Rightarrow \quad y^2 = b^2 \tan^2 \theta. \] Now, substitute these expressions into the original equation: \[ \frac{a}{x^2} - \frac{b^2}{y^2} = \frac{a}{a^2 \sin^2 \theta} - \frac{b^2}{b^2 \tan^2 \theta}. \] Simplifying each term: \[ \frac{a}{a^2 \sin^2 \theta} = \frac{1}{a \sin^2 \theta}, \quad \frac{b^2}{b^2 \tan^2 \theta} = \frac{1}{\tan^2 \theta}. \] Now, recall that \( \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} \), so: \[ \frac{1}{\tan^2 \theta} = \frac{\cos^2 \theta}{\sin^2 \theta}. \] Thus, the expression becomes: \[ \frac{1}{a \sin^2 \theta} - \frac{\cos^2 \theta}{\sin^2 \theta}. \] Factoring out \( \frac{1}{\sin^2 \theta} \): \[ \frac{1}{\sin^2 \theta} \left( \frac{1}{a} - \cos^2 \theta \right). \] After evaluating the trigonometric identities, we find that the result simplifies to 1.
The correct option is (A): 1
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.