To find \(\frac{dy}{dx}\) given \(x = \sqrt{a^{\sin^{-1} t}}\) and \(y = \sqrt{a^{\cos^{-1} t}}\), we start by first expressing \(x\) and \(y\) in terms of \(t\). Since \(x = \sqrt{a^{\sin^{-1} t}}\), we have:
\(x = a^{\frac{1}{2}\sin^{-1} t}\)
Similarly, \(y = \sqrt{a^{\cos^{-1} t}}\) becomes:
\(y = a^{\frac{1}{2}\cos^{-1} t}\)
To find \(\frac{dy}{dx}\), we use the chain rule by first finding \(\frac{dx}{dt}\) and \(\frac{dy}{dt}\).
For \(\ln x\):
\(\ln x = \frac{1}{2} \sin^{-1} t \cdot \ln a\)
Differentiate with respect to \(t\):
\(\frac{1}{x}\cdot \frac{dx}{dt} = \frac{1}{2 \sqrt{1 - t^2}} \cdot \ln a\)
Thus,
\(\frac{dx}{dt} = x \cdot \frac{\ln a}{2 \sqrt{1 - t^2}}\)
For \(\ln y\):
\(\ln y = \frac{1}{2} \cos^{-1} t \cdot \ln a\)
Differentiate with respect to \(t\):
\(\frac{1}{y} \cdot \frac{dy}{dt} = -\frac{1}{2 \sqrt{1 - t^2}} \cdot \ln a\)
Thus,
\(\frac{dy}{dt} = y \cdot -\frac{\ln a}{2 \sqrt{1 - t^2}}\)
Using the chain rule, we have:
\(\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}\)
Substitute \(\frac{dy}{dt}\) and \(\frac{dx}{dt}\):
\(\frac{dy}{dx} = \frac{y \cdot -\frac{\ln a}{2 \sqrt{1 - t^2}}}{x \cdot \frac{\ln a}{2 \sqrt{1 - t^2}}}\)
This simplifies to:
\(\frac{dy}{dx} = -\frac{y}{x}\)
Therefore, the correct answer is \(-\frac{y}{x}\).
If $y = 5 \cos x - 3 \sin x$, prove that $\frac{d^2y}{dx^2} + y = 0$.
Show that \( f(x) = \tan^{-1}(\sin x + \cos x) \) is an increasing function in \( \left[ 0, \frac{\pi}{4} \right] \).