We are given that:
\[
x = a \cos^2 t, y = b \sin^2 t
\]
To find \( \frac{dy}{dx} \), we use the chain rule:
\[
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}
\]
Now, compute \( \frac{dy}{dt} \) and \( \frac{dx}{dt} \):
1. Differentiating \( y \) with respect to \( t \):
\[
y = b \sin^2 t
\]
\[
\frac{dy}{dt} = b \cdot 2 \sin t \cdot \cos t = 2b \sin t \cos t
\]
2. Differentiating \( x \) with respect to \( t \):
\[
x = a \cos^2 t
\]
\[
\frac{dx}{dt} = a \cdot 2 \cos t (-\sin t) = -2a \cos t \sin t
\]
Thus, we have:
\[
\frac{dy}{dx} = \frac{2b \sin t \cos t}{-2a \cos t \sin t}
\]
Simplifying:
\[
\frac{dy}{dx} = -\frac{b}{a}
\]
Final Answer:
\[
\boxed{\frac{dy}{dx} = -\frac{b}{a}}
\]