Question:

If \( x = \frac{4t}{1+t^2} \), \( y = 3\left(\frac{1-t^2}{1+t^2}\right) \), then show that \( \frac{dy}{dx} = -\frac{9x}{4y} \).

Show Hint

For parametric differentiation, the key formula is \( \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \). After finding the derivative in terms of the parameter \(t\), you may need to substitute the original expressions for \(x\) and \(y\) to show equivalence.
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

This is a parametric differentiation problem. We will find \( \frac{dy}{dt} \) and \( \frac{dx}{dt} \) first.
Step 1: Find \( \frac{dx}{dt} \).
Using the quotient rule: \[ \frac{dx}{dt} = \frac{(4)(1+t^2) - (4t)(2t)}{(1+t^2)^2} = \frac{4+4t^2-8t^2}{(1+t^2)^2} = \frac{4(1-t^2)}{(1+t^2)^2} \] Step 2: Find \( \frac{dy}{dt} \).
\( y = \frac{3-3t^2}{1+t^2} \). Using the quotient rule: \[ \frac{dy}{dt} = \frac{(-6t)(1+t^2) - (3-3t^2)(2t)}{(1+t^2)^2} = \frac{-6t-6t^3-6t+6t^3}{(1+t^2)^2} = \frac{-12t}{(1+t^2)^2} \] Step 3: Find \( \frac{dy}{dx} \). \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{-12t / (1+t^2)^2}{4(1-t^2) / (1+t^2)^2} = \frac{-12t}{4(1-t^2)} = \frac{-3t}{1-t^2} \] Step 4: Evaluate the right-hand side. \[ -\frac{9x}{4y} = -\frac{9(\frac{4t}{1+t^2})}{4(3\frac{1-t^2}{1+t^2})} = -\frac{36t/(1+t^2)}{12(1-t^2)/(1+t^2)} = -\frac{36t}{12(1-t^2)} = \frac{-3t}{1-t^2} \] Since \( \frac{dy}{dx} \) and \( -\frac{9x}{4y} \) both simplify to the same expression in terms of \(t\), we have shown that \( \frac{dy}{dx} = -\frac{9x}{4y} \).
Was this answer helpful?
0
0