Question:

If \(x = 7\), then what is the value of
\(\frac{x^{\frac{1}{2}} + x^{-\frac{1}{2}}}{1 - x} + \frac{1 - x^{-\frac{1}{2}}}{1 - \sqrt{x}} = ?\)

Show Hint

Simplify the algebraic expression completely before substituting the value to avoid complex arithmetic errors.
Updated On: Feb 14, 2026
  • \(\frac{7}{6}\)
  • \(\frac{1}{3}\)
  • \(-\frac{\sqrt{7}}{3}\)
  • 3
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Simplify the Terms:
First term: \(\frac{\sqrt{x} + \frac{1}{\sqrt{x}}}{1-x} = \frac{\frac{x+1}{\sqrt{x}}}{1-x} = \frac{x+1}{\sqrt{x}(1-x)}\). Second term: \(\frac{1 - \frac{1}{\sqrt{x}}}{1 - \sqrt{x}} = \frac{\frac{\sqrt{x}-1}{\sqrt{x}}}{-(\sqrt{x}-1)} = -\frac{1}{\sqrt{x}}\). Step 2: Combine Terms:
Total Expression = \(\frac{x+1}{\sqrt{x}(1-x)} - \frac{1}{\sqrt{x}} = \frac{x+1 - (1-x)}{\sqrt{x}(1-x)} = \frac{2x}{\sqrt{x}(1-x)} = \frac{2\sqrt{x}}{1-x}\). Step 3: Substitute \(x=7\):
Value = \(\frac{2\sqrt{7}}{1-7} = \frac{2\sqrt{7}}{-6} = -\frac{\sqrt{7}}{3}\).
Was this answer helpful?
0
0

Questions Asked in SRCC GBO exam

View More Questions