Let \( x = (4096)^{7 + 4\sqrt{3}} \).
We know that \( 4096 = 2^{12} \), so:
\[ x = (2^{12})^{7 + 4\sqrt{3}} = 2^{12(7 + 4\sqrt{3})} = 2^{84 + 48\sqrt{3}} \]
Now we evaluate each expression to see which one equals \( 64 = 2^6 \).
Option 1: \( \frac{x^7}{x^{2\sqrt{3}}} = x^{7 - 2\sqrt{3}} \)
\[ x^{7 - 2\sqrt{3}} = \left(2^{84 + 48\sqrt{3}}\right)^{7 - 2\sqrt{3}} = 2^{(84 + 48\sqrt{3})(7 - 2\sqrt{3})} \]
Expanding the exponent: \[ 84 \cdot 7 + 84 \cdot (-2\sqrt{3}) + 48\sqrt{3} \cdot 7 + 48\sqrt{3} \cdot (-2\sqrt{3}) \] \[ = 588 - 168\sqrt{3} + 336\sqrt{3} - 288 = 300 + 168\sqrt{3} \]
So the result is: \[ 2^{300 + 168\sqrt{3}} \neq 64 \]
Option 2: \( \frac{x^7}{x^{4\sqrt{3}}} = x^{7 - 4\sqrt{3}} \)
\[ x^{7 - 4\sqrt{3}} = \left(2^{84 + 48\sqrt{3}}\right)^{7 - 4\sqrt{3}} = 2^{(84 + 48\sqrt{3})(7 - 4\sqrt{3})} \]
Expanding the exponent: \[ 84 \cdot 7 + 84 \cdot (-4\sqrt{3}) + 48\sqrt{3} \cdot 7 + 48\sqrt{3} \cdot (-4\sqrt{3}) \] \[ = 588 - 336\sqrt{3} + 336\sqrt{3} - 576 = 12 \]
So the result is: \[ 2^{12} = 4096 \neq 64 \]
Option 3: \( \frac{x^{7/2}}{x^{4/\sqrt{3}}} = x^{\frac{7}{2} - \frac{4}{\sqrt{3}}} \)
\[ x^{\frac{7}{2} - \frac{4}{\sqrt{3}}} = \left(2^{84 + 48\sqrt{3}}\right)^{\frac{7}{2} - \frac{4}{\sqrt{3}}} \]
This does not simplify neatly and will not give an integer power of 2. So this is also incorrect.
Option 4: \( \frac{x^{7/2}}{x^{2\sqrt{3}}} = x^{\frac{7}{2} - 2\sqrt{3}} \)
\[ x^{\frac{7}{2} - 2\sqrt{3}} = \left(2^{84 + 48\sqrt{3}}\right)^{\frac{7}{2} - 2\sqrt{3}} = 2^{(84 + 48\sqrt{3})(\frac{7}{2} - 2\sqrt{3})} \]
Expanding the exponent: \[ 84 \cdot \frac{7}{2} + 84 \cdot (-2\sqrt{3}) + 48\sqrt{3} \cdot \frac{7}{2} + 48\sqrt{3} \cdot (-2\sqrt{3}) \] \[ = 294 - 168\sqrt{3} + 168\sqrt{3} - 288 = 6 \]
So the result is: \[ 2^6 = 64 \]
Final Answer: \( \boxed{\frac{x^{7/2}}{x^{2\sqrt{3}}}} \)
Given:
\( x = (4096)^{7 + 4\sqrt{3}} \)
\( 4096 = 2^{12} \), so:
\( x = (2^{12})^{7 + 4\sqrt{3}} = 2^{12(7 + 4\sqrt{3})} \)
\[ x^{\frac{7}{2}} = \left(2^{12(7 + 4\sqrt{3})}\right)^{\frac{7}{2}} = 2^{\frac{7}{2} \cdot 12(7 + 4\sqrt{3})} = 2^{42(7 + 4\sqrt{3})} \]
\[ x^{2\sqrt{3}} = \left(2^{12(7 + 4\sqrt{3})}\right)^{2\sqrt{3}} = 2^{24\sqrt{3}(7 + 4\sqrt{3})} \]
\[ \frac{x^{\frac{7}{2}}}{x^{2\sqrt{3}}} = \frac{2^{42(7 + 4\sqrt{3})}}{2^{24\sqrt{3}(7 + 4\sqrt{3})}} = 2^{(7 + 4\sqrt{3}) \cdot (42 - 24\sqrt{3})} \]
\[ (7 + 4\sqrt{3})(7 - 4\sqrt{3}) = 49 - 48 = 1 \]
\[ \Rightarrow \frac{x^{\frac{7}{2}}}{x^{2\sqrt{3}}} = 2^{6} = 64 \]
\[ \frac{x^{\frac{7}{2}}}{x^{2\sqrt{3}}} = 64 \]
Correct Option: (D)
When $10^{100}$ is divided by 7, the remainder is ?