To solve for \(\frac{dy}{dx}\) given the equation \(x^{\frac{3}{4}}+y^{\frac{3}{4}}=a^{\frac{3}{4}}\), we must differentiate both sides with respect to \(x\).
Start with the original equation:
\(x^{\frac{3}{4}}+y^{\frac{3}{4}}=a^{\frac{3}{4}}\)
Differentiating each term with respect to \(x\), we have:
\(\frac{d}{dx}(x^{\frac{3}{4}}) + \frac{d}{dx}(y^{\frac{3}{4}}) = \frac{d}{dx}(a^{\frac{3}{4}})\)
Since \(\frac{d}{dx}(a^{\frac{3}{4}})=0\) (as \(a\) is a constant), this simplifies to:
\(\frac{3}{4}x^{-\frac{1}{4}} + \frac{3}{4}y^{-\frac{1}{4}}\frac{dy}{dx} = 0\)
Rearranging to solve for \(\frac{dy}{dx}\), we find:
\(\frac{3}{4}y^{-\frac{1}{4}}\frac{dy}{dx} = -\frac{3}{4}x^{-\frac{1}{4}}\)
Dividing both sides by \(\frac{3}{4}y^{-\frac{1}{4}}\) gives:
\(\frac{dy}{dx} = -\frac{x^{-\frac{1}{4}}}{y^{-\frac{1}{4}}}\)
Simplifying the expression, we have:
\(\frac{dy}{dx} = -(x^{-\frac{1}{4}}y^{\frac{1}{4}}) = -(\frac{y}{x})^{\frac{1}{4}}\)
Thus, the correct answer is \(-(\frac{y}{x})^{\frac{1}{4}}\).