We are given the equations:
\[
x^2 + y^2 = 25 \quad \text{and} \quad xy = 12.
\]
We need to find the value of \( x^4 + y^4 \).
Recall the algebraic identity:
\[
(x^2 + y^2)^2 = x^4 + y^4 + 2x^2 y^2.
\]
Rearranging this, we get:
\[
x^4 + y^4 = (x^2 + y^2)^2 - 2(xy)^2.
\]
Substitute the given values:
\[
x^2 + y^2 = 25, \quad xy = 12 \implies (xy)^2 = 12^2 = 144.
\]
Therefore,
\[
x^4 + y^4 = 25^2 - 2 \times 144 = 625 - 288 = 337.
\]
Hence, the required value is:
\[
\boxed{337}.
\]