Factor \( x^2 + x - 6 = (x - 2)(x + 3) \)
Given it divides \( 2x^3 + x^2 + ax + b \), let’s perform polynomial division or use remainder theorem:
Substitute roots into the cubic:
Let \( f(x) = 2x^3 + x^2 + ax + b \)
\[
f(2) = 16 + 4 + 2a + b = 0 \Rightarrow 2a + b = -20 \quad \text{(1)}
\]
\[
f(-3) = -54 + 9 -3a + b = 0 \Rightarrow -3a + b = 45 \quad \text{(2)}
\]
Solving equations (1) and (2):
From (1): \( b = -20 - 2a \)
Substitute into (2):
\[
-3a + (-20 - 2a) = 45 \Rightarrow -5a = 65 \Rightarrow a = -13,\quad b = 6
\]
Then \( 6a + 13b = 6(-13) + 13(6) = -78 + 78 = \boxed{0} \)