\(If ƒ(x)=∫_0^xt\ sin\ t\ dt,\ then ƒ'(x)is\)
\(cos\ x+x\ sin\ x\)
\(x\ sin\ x\)
\(x\ cos\ x\)
\(sin\ x+x\ cos\ x\)
\( ƒ(x)=∫_0^xt\ sin\ t\ dt\)
\(Integrating\ by\ parts, \ we \ obtain\)
\( ƒ(x)=t∫_0^x sin\ t\ dt-∫_0^x[{(\frac {d}{dt}t)∫sin\ t\ dt}]\ dt\)
= \([t(-cos\ t)]_0^x-∫_0^x(-cos\ t)dt\)
= \([-t\ cos\ t+sin\ t]_0^x\)
= \(-x\ cos\ x+sin\ x\)
\(⇒ ƒ(x)=-[{x(-sin\ x)}+cos\ x]+cos\ x\)
= \(x\ sin\ x-cos\ x+cos\ x\)
= \(x\ sin\ x\)
\(Hence, \ correct\ Answer\ is \ B.\)
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]

Integration by Parts is a mode of integrating 2 functions, when they multiplied with each other. For two functions ‘u’ and ‘v’, the formula is as follows:
∫u v dx = u∫v dx −∫u' (∫v dx) dx
The first function ‘u’ is used in the following order (ILATE):
The rule as a diagram:
