Requirement: To get a virtual and magnified image, the object must be placed between the pole (P) and the focus (F) of the concave mirror.
A positive magnification indicates the image is virtual and erect.
\[ m = -\frac{v}{u}, \quad \text{so:} \quad +2 = -\frac{v}{u} \Rightarrow v = -2u \]
\[ \frac{1}{f} = \frac{1}{v} + \frac{1}{u} \] Substitute \( f = -18 \) and \( v = -2u \): \[ \frac{1}{-18} = \frac{1}{-2u} + \frac{1}{u} \Rightarrow \frac{1}{-18} = \frac{-1 + 2}{2u} = \frac{1}{2u} \] Solving: \[ 2u = -18 \Rightarrow u = -9 \, \text{cm} \]
The object should be placed 9 cm in front of the mirror.
\[ \boxed{\text{Object distance } u = -9 \text{ cm (i.e., 9 cm in front of the mirror)}} \]
‘दीवार खड़ी करना’ मुहावरे का वाक्य में इस प्रकार प्रयोग करें कि अर्थ स्पष्ट हो जाए।