We are given the determinant of the matrix:
\(\begin{vmatrix} 1 & 2 & 1 \\ 0 & x & -3 \\ 2 & -1 & x \end{vmatrix} = 0\)
To solve for \(x\), we will expand the determinant along the first row:
\(\text{det} = 1 \cdot \begin{vmatrix} x & -3 \\ -1 & x \end{vmatrix} - 2 \cdot \begin{vmatrix} 0 & -3 \\ 2 & x \end{vmatrix} + 1 \cdot \begin{vmatrix} 0 & x \\ 2 & -1 \end{vmatrix}\)
Now, calculate the 2x2 determinants:
\(\begin{vmatrix} x & -3 \\ -1 & x \end{vmatrix} = (x \cdot x) - (-3 \cdot -1) = x^2 - 3\)
\(\begin{vmatrix} 0 & -3 \\ 2 & x \end{vmatrix} = (0 \cdot x) - (-3 \cdot 2) = 6\)
\(\begin{vmatrix} 0 & x \\ 2 & -1 \end{vmatrix} = (0 \cdot -1) - (x \cdot 2) = -2x\)
Now substitute these values back into the determinant expansion:
\(\text{det} = 1 \cdot (x^2 - 3) - 2 \cdot 6 + 1 \cdot (-2x) = x^2 - 3 - 12 - 2x = x^2 - 2x - 15\)
Set this equal to 0 to solve for \(x\):
\(x^2 - 2x - 15 = 0\)
Factor the quadratic equation:
\((x - 5)(x + 3) = 0\)
Thus, the solutions are:
\(x = 5 \) or \( x = -3\)
The values of \(x\) are 5 and -3.
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to