We are given the determinant of the matrix:
\(\begin{vmatrix} 1 & 2 & 1 \\ 0 & x & -3 \\ 2 & -1 & x \end{vmatrix} = 0\)
To solve for \(x\), we will expand the determinant along the first row:
\(\text{det} = 1 \cdot \begin{vmatrix} x & -3 \\ -1 & x \end{vmatrix} - 2 \cdot \begin{vmatrix} 0 & -3 \\ 2 & x \end{vmatrix} + 1 \cdot \begin{vmatrix} 0 & x \\ 2 & -1 \end{vmatrix}\)
Now, calculate the 2x2 determinants:
\(\begin{vmatrix} x & -3 \\ -1 & x \end{vmatrix} = (x \cdot x) - (-3 \cdot -1) = x^2 - 3\)
\(\begin{vmatrix} 0 & -3 \\ 2 & x \end{vmatrix} = (0 \cdot x) - (-3 \cdot 2) = 6\)
\(\begin{vmatrix} 0 & x \\ 2 & -1 \end{vmatrix} = (0 \cdot -1) - (x \cdot 2) = -2x\)
Now substitute these values back into the determinant expansion:
\(\text{det} = 1 \cdot (x^2 - 3) - 2 \cdot 6 + 1 \cdot (-2x) = x^2 - 3 - 12 - 2x = x^2 - 2x - 15\)
Set this equal to 0 to solve for \(x\):
\(x^2 - 2x - 15 = 0\)
Factor the quadratic equation:
\((x - 5)(x + 3) = 0\)
Thus, the solutions are:
\(x = 5 \) or \( x = -3\)
The values of \(x\) are 5 and -3.
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to