Step 1: Use Scalar Projection Formula
The magnitude of the projection of \( \vec{a} \) on \( \vec{b} \) is: \[ \text{Projection} = \frac{|\vec{a} \cdot \vec{b}|}{|\vec{b}|} \]
Step 2: Compute Dot Product
Let \( \vec{a} = 2\hat{i} + 3\hat{j} + \hat{k},\ \vec{b} = \hat{i} \). Then: \[ \vec{a} \cdot \vec{b} = 2(1) + 3(0) + 1(0) = 2 \]
Step 3: Compute Magnitude of \( \vec{b} \)
\[ |\vec{b}| = \sqrt{1^2 + 0^2 + 0^2} = 1 \]
Step 4: Final Answer
\[ \text{Scalar projection} = \frac{2}{1} = 2 \]
Let $ \vec{w} = \hat{i} + \hat{j} - 2\hat{k} $, and $ \vec{u} $ and $ \vec{v} $ be two vectors, such that $ \vec{u} \times \vec{v} = \vec{w} $ and $ \vec{v} \times \vec{w} = \vec{u} $. Let $ \alpha, \beta, \gamma $, and $ t $ be real numbers such that: $$ \vec{u} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}, $$ and the system of equations is: $$ -t\alpha + \beta + \gamma = 0 \quad \cdots (1) $$ $$ \alpha - t\beta + \gamma = 0 \quad \cdots (2) $$ $$ \alpha + \beta - t\gamma = 0 \quad \cdots (3) $$ Match each entry in List-I to the correct entry in List-II and choose the correct option.
List-I
List-II