Step 1: Use Scalar Projection Formula
The magnitude of the projection of \( \vec{a} \) on \( \vec{b} \) is: \[ \text{Projection} = \frac{|\vec{a} \cdot \vec{b}|}{|\vec{b}|} \]
Step 2: Compute Dot Product
Let \( \vec{a} = 2\hat{i} + 3\hat{j} + \hat{k},\ \vec{b} = \hat{i} \). Then: \[ \vec{a} \cdot \vec{b} = 2(1) + 3(0) + 1(0) = 2 \]
Step 3: Compute Magnitude of \( \vec{b} \)
\[ |\vec{b}| = \sqrt{1^2 + 0^2 + 0^2} = 1 \]
Step 4: Final Answer
\[ \text{Scalar projection} = \frac{2}{1} = 2 \]