Let:
\[
\vec{A} = 2\hat{i} + \hat{j} - \hat{k}, \quad \vec{B} = 2\hat{i} + 4\hat{j} - 4\hat{k}, \quad \vec{C} = \vec{c}
\]
Let centroid:
\[
\vec{G} = \frac{\vec{A} + \vec{B} + \vec{C}}{3}
\Rightarrow \vec{C} = 3\vec{G} - \vec{A} - \vec{B}
\]
We know:
\[
AG^2 + BG^2 + CG^2 = \frac{1}{3}(AB^2 + BC^2 + CA^2)
\quad \text{(Using the identity for sum of squares of distances from centroid)}
\]
But using vectors:
\[
AG = \vec{A} - \vec{G}, \quad BG = \vec{B} - \vec{G}, \quad CG = \vec{C} - \vec{G}
\]
Then using identities or direct vector calculation (from solution steps), the result simplifies to:
\[
AG^2 + BG^2 + CG^2 = 74
\]