We are given that:
\[
| \vec{P} + \vec{Q} | = | \vec{P} | = | \vec{Q} |.
\]
Let the magnitudes of \( \vec{P} \) and \( \vec{Q} \) be \( r \), so we have:
\[
| \vec{P} | = | \vec{Q} | = r.
\]
Also, from the given condition, we know:
\[
| \vec{P} + \vec{Q} | = r.
\]
The magnitude of the vector sum \( \vec{P} + \vec{Q} \) is given by the formula:
\[
| \vec{P} + \vec{Q} | = \sqrt{|\vec{P}|^2 + |\vec{Q}|^2 + 2 |\vec{P}| |\vec{Q}| \cos \theta},
\]
where \( \theta \) is the angle between \( \vec{P} \) and \( \vec{Q} \). Substituting the values \( | \vec{P} | = | \vec{Q} | = r \), we get:
\[
r = \sqrt{r^2 + r^2 + 2r^2 \cos \theta}.
\]
Simplifying:
\[
r = \sqrt{2r^2 + 2r^2 \cos \theta}.
\]
Squaring both sides:
\[
r^2 = 2r^2 + 2r^2 \cos \theta.
\]
Rearranging:
\[
0 = r^2 (1 + \cos \theta).
\]
For \( r \neq 0 \), we have:
\[
1 + \cos \theta = 0,
\]
which gives:
\[
\cos \theta = -1.
\]
Therefore, \( \theta = 120^\circ \).
Thus, the correct answer is option (2).