Step 1: Given Conditions
Let the magnitude of \( \vec{P} \) and \( \vec{Q} \) be \( P \). So, we are told: \[ | \vec{P} + \vec{Q} | = P \]
Step 2: Use the vector addition formula
From the formula for the magnitude of the sum of two vectors: \[ | \vec{P} + \vec{Q} | = \sqrt{P^2 + Q^2 + 2PQ \cos \theta} \] Since \( | \vec{P} | = | \vec{Q} | = P \), we have: \[ | \vec{P} + \vec{Q} | = \sqrt{P^2 + P^2 + 2P^2 \cos \theta} = \sqrt{2P^2 (1 + \cos \theta)} \]
Step 3: Equating with the given magnitude
Since \( | \vec{P} + \vec{Q} | = P \), we equate: \[ \sqrt{2P^2 (1 + \cos \theta)} = P \] Squaring both sides: \[ 2P^2 (1 + \cos \theta) = P^2 \Rightarrow 2(1 + \cos \theta) = 1 \Rightarrow 1 + \cos \theta = \frac{1}{2} \Rightarrow \cos \theta = -\frac{1}{2} \Rightarrow \theta = 120^\circ \]
120°
Match the pollination types in List-I with their correct mechanisms in List-II:
List-I (Pollination Type) | List-II (Mechanism) |
---|---|
A) Xenogamy | I) Genetically different type of pollen grains |
B) Ophiophily | II) Pollination by snakes |
C) Chasmogamous | III) Exposed anthers and stigmas |
D) Cleistogamous | IV) Flowers do not open |