Step 1: Given Conditions
Let the magnitude of \( \vec{P} \) and \( \vec{Q} \) be \( P \). So, we are told: \[ | \vec{P} + \vec{Q} | = P \]
Step 2: Use the vector addition formula
From the formula for the magnitude of the sum of two vectors: \[ | \vec{P} + \vec{Q} | = \sqrt{P^2 + Q^2 + 2PQ \cos \theta} \] Since \( | \vec{P} | = | \vec{Q} | = P \), we have: \[ | \vec{P} + \vec{Q} | = \sqrt{P^2 + P^2 + 2P^2 \cos \theta} = \sqrt{2P^2 (1 + \cos \theta)} \]
Step 3: Equating with the given magnitude
Since \( | \vec{P} + \vec{Q} | = P \), we equate: \[ \sqrt{2P^2 (1 + \cos \theta)} = P \] Squaring both sides: \[ 2P^2 (1 + \cos \theta) = P^2 \Rightarrow 2(1 + \cos \theta) = 1 \Rightarrow 1 + \cos \theta = \frac{1}{2} \Rightarrow \cos \theta = -\frac{1}{2} \Rightarrow \theta = 120^\circ \]
120°
Let \( \vec{p} \) and \( \vec{q} \) be two unit vectors and \( \alpha \) be the angle between them. Then \( (\vec{p} + \vec{q}) \) will be a unit vector for what value of \( \alpha \)?
Evaluate the integral: \[ I = \int_{-3}^{3} |2 - x| dx. \]
Evaluate the integral: \[ I = \int_{-\pi}^{\pi} \frac{x \sin^3 x}{4 - \cos^2 x} dx. \]
If \[ \int \frac{3}{2\cos 3x \sqrt{2} \sin 2x} dx = \frac{3}{2} (\tan x)^{\beta} + \frac{3}{10} (\tan x)^4 + C \] then \( A = \) ?
If \[ \int \frac{2}{1+\sin x} dx = 2 \log |A(x) - B(x)| + C \] and \( 0 \leq x \leq \frac{\pi}{2} \), then \( B(\pi/4) = \) ?