Step 1: Understanding the Concept:
We are given a relationship between three vectors and their magnitudes. To find the angle between two of the vectors, $\vec{a}$ and $\vec{b}$, we can use the dot product formula, which relates the dot product to the magnitudes and the cosine of the angle.
Step 2: Key Formula or Approach:
The angle $\theta$ between two vectors $\vec{a}$ and $\vec{b}$ is given by $\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$. We can find the value of $\vec{a} \cdot \vec{b}$ by manipulating the given vector equation.
Step 3: Detailed Explanation:
We are given $\vec{a} + \vec{b} + \vec{c} = \vec{0}$.
To find the angle between $\vec{a}$ and $\vec{b}$, we should isolate the third vector, $\vec{c}$.
\[ \vec{a} + \vec{b} = -\vec{c} \]
Now, take the dot product of each side with itself. This is equivalent to squaring the magnitude of each side.
\[ (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = (-\vec{c}) \cdot (-\vec{c}) \]
\[ |\vec{a} + \vec{b}|^2 = |-\vec{c}|^2 = |\vec{c}|^2 \]
Expand the left side:
\[ \vec{a} \cdot \vec{a} + 2(\vec{a} \cdot \vec{b}) + \vec{b} \cdot \vec{b} = |\vec{c}|^2 \]
\[ |\vec{a}|^2 + 2(\vec{a} \cdot \vec{b}) + |\vec{b}|^2 = |\vec{c}|^2 \]
Now, substitute the given magnitudes: $|\vec{a}| = 3, |\vec{b}| = 5, |\vec{c}| = 7$.
\[ 3^2 + 2(\vec{a} \cdot \vec{b}) + 5^2 = 7^2 \]
\[ 9 + 2(\vec{a} \cdot \vec{b}) + 25 = 49 \]
\[ 34 + 2(\vec{a} \cdot \vec{b}) = 49 \]
\[ 2(\vec{a} \cdot \vec{b}) = 49 - 34 = 15 \]
\[ \vec{a} \cdot \vec{b} = \frac{15}{2} \]
Now we can find the angle $\theta$ between $\vec{a}$ and $\vec{b}$.
\[ \cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{15/2}{3 \times 5} = \frac{15/2}{15} = \frac{1}{2} \]
The angle $\theta$ in the range $[0, \pi]$ for which $\cos\theta = \frac{1}{2}$ is $\theta = \frac{\pi}{3}$.
Step 4: Final Answer:
The angle between $\vec{a}$ and $\vec{b}$ is $\frac{\pi{3}$}.