We are given the four vectors \( \vec{a} = \hat{i} - \hat{j} + \hat{k} \), \( \vec{b} = \hat{i} + \hat{j} - 2\hat{k} \), \( \vec{c} = 2\hat{i} - 3\hat{j} - 3\hat{k} \), and \( \vec{d} = 2\hat{i} + \hat{j} + \hat{k} \). We are tasked with calculating \( (\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{d}) \).
Step 1: First, compute the cross product \( \vec{a} \times \vec{c} \). Using the determinant formula for the cross product: \[ \vec{a} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 2 & -3 & -3 \end{vmatrix} \] \[ = \hat{i} \left( (-1)(-3) - (1)(-3) \right) - \hat{j} \left( (1)(-3) - (1)(2) \right) + \hat{k} \left( (1)(-3) - (-1)(2) \right) \] \[ = \hat{i} \left( 3 + 3 \right) - \hat{j} \left( -3 - 2 \right) + \hat{k} \left( -3 + 2 \right) \] \[ = \hat{i} \cdot 6 - \hat{j} \cdot (-5) + \hat{k} \cdot (-1) \] \[ = 6\hat{i} + 5\hat{j} - \hat{k} \] Thus, \( \vec{a} \times \vec{c} = 6\hat{i} + 5\hat{j} - \hat{k} \).
Step 2: Now, compute the cross product \( \vec{b} \times \vec{d} \): \[ \vec{b} \times \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & -2 \\ 2 & 1 & 1 \end{vmatrix} \] \[ = \hat{i} \left( 1(1) - (-2)(1) \right) - \hat{j} \left( 1(1) - (-2)(2) \right) + \hat{k} \left( 1(1) - 1(2) \right) \] \[ = \hat{i} \left( 1 + 2 \right) - \hat{j} \left( 1 + 4 \right) + \hat{k} \left( 1 - 2 \right) \] \[ = \hat{i} \cdot 3 - \hat{j} \cdot 5 + \hat{k} \cdot (-1) \] \[ = 3\hat{i} - 5\hat{j} - \hat{k} \] Thus, \( \vec{b} \times \vec{d} = 3\hat{i} - 5\hat{j} - \hat{k} \).
Step 3: Now, compute \( (\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{d}) \). We use the distributive property of the cross product: \[ (\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{d}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 6 & 5 & -1 \\ 3 & -5 & -1 \end{vmatrix} \] \[ = \hat{i} \left( (5)(-1) - (-1)(-5) \right) - \hat{j} \left( (6)(-1) - (-1)(3) \right) + \hat{k} \left( (6)(-5) - (5)(3) \right) \] \[ = \hat{i} \left( -5 - 5 \right) - \hat{j} \left( -6 + 3 \right) + \hat{k} \left( -30 - 15 \right) \] \[ = \hat{i} \cdot (-10) - \hat{j} \cdot (-3) + \hat{k} \cdot (-45) \] \[ = -10\hat{i} + 3\hat{j} - 45\hat{k} \] Thus, the result is \( (\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{d}) = -10\hat{i} + 3\hat{j} - 45\hat{k} \).