Question:

If \( \vec{a} = \hat{i} - \hat{j} + \hat{k} \), \( \vec{b} = \hat{i} + \hat{j} - 2\hat{k} \), \( \vec{c} = 2\hat{i} - 3\hat{j} - 3\hat{k} \), and \( \vec{d} = 2\hat{i} + \hat{j} + \hat{k} \) are four vectors, then \( (\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{d}) = \):

Show Hint

When calculating the cross product of two vectors, use the determinant method. To find the cross product of the cross products, apply the distributive property and simplify step by step.
Updated On: Mar 24, 2025
  • \( 2\hat{i} + 19\hat{j} - 11\hat{k} \)
  • \( -8\hat{i} + 19\hat{j} - 29\hat{k} \)
  • \( 2\hat{i} + \hat{j} - 11\hat{k} \)
  • \( -8\hat{i} + \hat{j} - 29\hat{k} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

We are given the four vectors \( \vec{a} = \hat{i} - \hat{j} + \hat{k} \), \( \vec{b} = \hat{i} + \hat{j} - 2\hat{k} \), \( \vec{c} = 2\hat{i} - 3\hat{j} - 3\hat{k} \), and \( \vec{d} = 2\hat{i} + \hat{j} + \hat{k} \). We are tasked with calculating \( (\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{d}) \). 
Step 1: First, compute the cross product \( \vec{a} \times \vec{c} \). Using the determinant formula for the cross product: \[ \vec{a} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 2 & -3 & -3 \end{vmatrix} \] \[ = \hat{i} \left( (-1)(-3) - (1)(-3) \right) - \hat{j} \left( (1)(-3) - (1)(2) \right) + \hat{k} \left( (1)(-3) - (-1)(2) \right) \] \[ = \hat{i} \left( 3 + 3 \right) - \hat{j} \left( -3 - 2 \right) + \hat{k} \left( -3 + 2 \right) \] \[ = \hat{i} \cdot 6 - \hat{j} \cdot (-5) + \hat{k} \cdot (-1) \] \[ = 6\hat{i} + 5\hat{j} - \hat{k} \] Thus, \( \vec{a} \times \vec{c} = 6\hat{i} + 5\hat{j} - \hat{k} \). 
Step 2: Now, compute the cross product \( \vec{b} \times \vec{d} \): \[ \vec{b} \times \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & -2 \\ 2 & 1 & 1 \end{vmatrix} \] \[ = \hat{i} \left( 1(1) - (-2)(1) \right) - \hat{j} \left( 1(1) - (-2)(2) \right) + \hat{k} \left( 1(1) - 1(2) \right) \] \[ = \hat{i} \left( 1 + 2 \right) - \hat{j} \left( 1 + 4 \right) + \hat{k} \left( 1 - 2 \right) \] \[ = \hat{i} \cdot 3 - \hat{j} \cdot 5 + \hat{k} \cdot (-1) \] \[ = 3\hat{i} - 5\hat{j} - \hat{k} \] Thus, \( \vec{b} \times \vec{d} = 3\hat{i} - 5\hat{j} - \hat{k} \). 
Step 3: Now, compute \( (\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{d}) \). We use the distributive property of the cross product: \[ (\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{d}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 6 & 5 & -1 \\ 3 & -5 & -1 \end{vmatrix} \] \[ = \hat{i} \left( (5)(-1) - (-1)(-5) \right) - \hat{j} \left( (6)(-1) - (-1)(3) \right) + \hat{k} \left( (6)(-5) - (5)(3) \right) \] \[ = \hat{i} \left( -5 - 5 \right) - \hat{j} \left( -6 + 3 \right) + \hat{k} \left( -30 - 15 \right) \] \[ = \hat{i} \cdot (-10) - \hat{j} \cdot (-3) + \hat{k} \cdot (-45) \] \[ = -10\hat{i} + 3\hat{j} - 45\hat{k} \] Thus, the result is \( (\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{d}) = -10\hat{i} + 3\hat{j} - 45\hat{k} \).

Was this answer helpful?
0
0

Top Questions on Vectors

View More Questions