We are given the four vectors \( \vec{a} = \hat{i} - \hat{j} + \hat{k} \), \( \vec{b} = \hat{i} + \hat{j} - 2\hat{k} \), \( \vec{c} = 2\hat{i} - 3\hat{j} - 3\hat{k} \), and \( \vec{d} = 2\hat{i} + \hat{j} + \hat{k} \). We are tasked with calculating \( (\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{d}) \).
Step 1: First, compute the cross product \( \vec{a} \times \vec{c} \). Using the determinant formula for the cross product: \[ \vec{a} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 2 & -3 & -3 \end{vmatrix} \] \[ = \hat{i} \left( (-1)(-3) - (1)(-3) \right) - \hat{j} \left( (1)(-3) - (1)(2) \right) + \hat{k} \left( (1)(-3) - (-1)(2) \right) \] \[ = \hat{i} \left( 3 + 3 \right) - \hat{j} \left( -3 - 2 \right) + \hat{k} \left( -3 + 2 \right) \] \[ = \hat{i} \cdot 6 - \hat{j} \cdot (-5) + \hat{k} \cdot (-1) \] \[ = 6\hat{i} + 5\hat{j} - \hat{k} \] Thus, \( \vec{a} \times \vec{c} = 6\hat{i} + 5\hat{j} - \hat{k} \).
Step 2: Now, compute the cross product \( \vec{b} \times \vec{d} \): \[ \vec{b} \times \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & -2 \\ 2 & 1 & 1 \end{vmatrix} \] \[ = \hat{i} \left( 1(1) - (-2)(1) \right) - \hat{j} \left( 1(1) - (-2)(2) \right) + \hat{k} \left( 1(1) - 1(2) \right) \] \[ = \hat{i} \left( 1 + 2 \right) - \hat{j} \left( 1 + 4 \right) + \hat{k} \left( 1 - 2 \right) \] \[ = \hat{i} \cdot 3 - \hat{j} \cdot 5 + \hat{k} \cdot (-1) \] \[ = 3\hat{i} - 5\hat{j} - \hat{k} \] Thus, \( \vec{b} \times \vec{d} = 3\hat{i} - 5\hat{j} - \hat{k} \).
Step 3: Now, compute \( (\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{d}) \). We use the distributive property of the cross product: \[ (\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{d}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 6 & 5 & -1 \\ 3 & -5 & -1 \end{vmatrix} \] \[ = \hat{i} \left( (5)(-1) - (-1)(-5) \right) - \hat{j} \left( (6)(-1) - (-1)(3) \right) + \hat{k} \left( (6)(-5) - (5)(3) \right) \] \[ = \hat{i} \left( -5 - 5 \right) - \hat{j} \left( -6 + 3 \right) + \hat{k} \left( -30 - 15 \right) \] \[ = \hat{i} \cdot (-10) - \hat{j} \cdot (-3) + \hat{k} \cdot (-45) \] \[ = -10\hat{i} + 3\hat{j} - 45\hat{k} \] Thus, the result is \( (\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{d}) = -10\hat{i} + 3\hat{j} - 45\hat{k} \).
Arrange the following in increasing order of their pK\(_b\) values.
What is Z in the following set of reactions?
Acetophenone can be prepared from which of the following reactants?
What are \(X\) and \(Y\) in the following reactions?
What are \(X\) and \(Y\) respectively in the following reaction?