Step 1: Find the angle between \( \vec{a} \) and \( \vec{b} \)
The dot product formula gives:
\[
\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta \implies \sqrt{3} = (1)(2)\cos\theta \implies \cos\theta = \frac{\sqrt{3}}{2}.
\]
Thus, \( \theta = \frac{\pi}{6} \).
Step 2: Angle between \( 2\vec{a} \) and \( -\vec{b} \)
Since \( 2\vec{a} \) and \( -\vec{b} \) involve a scalar multiplication, the angle becomes:
\[
\pi - \frac{\pi}{6} = \frac{5\pi}{6}.
\]
Step 3: Verify the options
The correct angle is \( \frac{5\pi}{6} \), matching option (C).