We are given:
\[
|\vec{a}| = 5, \, |\vec{b}| = 8, \, |\vec{a} - \vec{b}| = 7
\]
The formula for the magnitude of the difference of two vectors is:
\[
|\vec{a} - \vec{b}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 - 2 |\vec{a}| |\vec{b}| \cos \theta}
\]
Substituting the given values:
\[
7 = \sqrt{5^2 + 8^2 - 2 \times 5 \times 8 \times \cos \theta}
\]
Simplifying:
\[
7 = \sqrt{25 + 64 - 80 \cos \theta}
\]
\[
49 = 89 - 80 \cos \theta
\]
\[
80 \cos \theta = 40
\]
\[
\cos \theta = \frac{1}{2}
\]
Thus, the angle \( \theta \) is:
\[
\theta = \cos^{-1} \left( \frac{1}{2} \right) = 60^\circ
\]
Thus, the angle between \( \vec{a} \) and \( \vec{b} \) is \( 60^\circ \).